首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
This work investigated the immobilised lipase kinetics of esterification of oleic acid and ethanol. The reaction was conducted under supercritical conditions (13 × 106 Pa and 40 °C) using carbon dioxide as solvent in a continuous packed bed (plug flow) reactor. Biocatalyst LypozymeTM IM60, which is lipase from Rhizomucor miehei (EC.3.1.1.3), immobilised on Duolite (anionic exchange resin) was used as biocatalyst. Kinetically, with regard to oleic acid, the reaction was successfully modelled by the Michaelis–Menten mechanism. The reaction rate constants Km and Vmax were evaluated. Furthermore, it was found to undergo competitive inhibition by ethanol, and the inhibition constant Ki was evaluated. © 2000 Society of Chemical Industry  相似文献   

2.
The present work investigates the reaction kinetics of immobilised lipase esterification of oleic acid and octanol, in a solvent-free system. Lipase from Rhizomucor miehei was immobilised on a hydrophobic support. The initial reaction rate was investigated as a function of octanol concentration and temperature, and the reaction kinetics were described in terms of the Michaelis–Menten mechanism. Evaluating Km, Vmax and kcat/Km as a function of temperature, it was found that Km was minimum and kcat/Km was maximum at 40°C while Vmax was maximum at 50°C. Furthermore, applying the Ping Pong Bi Bi mechanism yielded good results for this two-substrate system.  相似文献   

3.
Low water systems have become important for organic synthetic reactions catalysed by enzymes. Esterification reactions could be catalysed by lipase in multiphasic reaction media, such as foams, containing excess water. The esterification of glycerol with oleic acid catalysed by lipase in aqueous foams has been characterised. More than 80% of the oleic acid was converted to glycerides within 10 h. Preliminary characterisation of the reaction with respect to time, pH and temperature indicate that acylglycerol synthesis in foam media as similar to hydrolysis by the same lipase. The observed high Km of glycerol for the esterification reaction may be due to poor surface active properties of glycerol. The unique advantages of foam as a medium to conduct lipase reactions are discussed. © 1999 Society of Chemical Industry  相似文献   

4.
A range of fatty acid esters is now being produced commercially with immobilized microbial lipases (glycerol ester hydrolases; EC) in nonaqueous solvents. In this study, a synthetic hydrogel was prepared by the copolymerization of methacrylic acid and dodecyl methacrylate in the presence of a crosslinker, N,N‐methylene bisacrylamide. A purified alkaline thermotolerant bacterial lipase from Bacillus cereus MTCC 8372 was immobilized on a poly(methacrylic acid‐co‐dodecyl methacrylate‐clN,N‐methylene bisacrylamide) hydrogel by an adsorption method. The hydrogel showed a 95% binding efficiency for the lipase. The bound lipase was evaluated for its hydrolytic potential toward various p‐nitrophenyl acyl esters with various C chain lengths. The bound lipase showed optimal hydrolytic activity toward p‐nitrophenyl palmitate at a pH of 8.5 and a temperature of 55°C. The hydrolytic activity of the hydrogel‐bound lipase was enhanced by Hg2+, Fe3+, and NH ions at a concentration of 1 mM. The hydrogel‐bound lipase was used to synthesize geranyl acetate from geraniol and acetic acid in n‐heptane. The optimization of the reaction conditions, such as catalyst loading, effect of substrate concentration, solvent (n‐pentane, n‐hexane, n‐heptane, n‐octane, and n‐nonane), reaction time, temperature, molecular sieve (3 Å × 1.5 mm) and scale up (at 50‐mL level), was studied. The immobilized lipase (25 mg/mL) was used to perform an esterification in n‐alkane(s) that resulted in the synthesis of approximately 82.8 mM geranyl acetate at 55°C in n‐heptane under continuous shaking (160 rpm) after 15 h when geraniol and acetic acid were used in a ratio of 100 : 100 mM. The addition of a molecular sieve (3 Å × 1.5 mm) to the reaction system at a concentration of 40 mg/mL in reaction volume (2 mL) resulted in an increase in the conversion of reactants into geranyl acetate (90.0 mM). During the repetitive esterification under optimum conditions, the hydrogel‐bound lipase produced ester (37.0 mM) after the eighth cycle of reuse. When the reaction volume was scaled up to 50 mL, the ester synthesized was 58.7 mM under optimized conditions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The present study demonstrates the effect of light irradiation on the esterification of oleic acid catalyzed by immobilized Pseudomonas cepacia lipase. The reaction rates of all the experiments under light irradiation were found to be higher than dark conditions. The kinetics of reactions supported the Ping‐Pong Bi‐Bi mechanism with dead end inhibition by both the alcohol and acid substrates. Moreover, circular dichroism (CD) spectroscopy was used to analyze the effect of light on lipase enzyme. The CD spectroscopic studies confirmed that the conformational changes in the secondary structure of the lipase enzyme increased the reaction rate of light‐illuminated experiments, which might have opened up the active sites of enzymes and thus, resulted in higher reaction rates compared to dark reactions. These results have successfully demonstrated that the light illumination positively influenced the rate of P. cepacia enzyme‐catalyzed esterification reactions.  相似文献   

6.
Polyvinyl alcohol (PVA)‐nanofibers‐immobilized lipase were formed by electrospinning. The specific surface area of the nanofiber (5.96 m2/g) was about 250 times larger than that of PVA‐film‐immobilized lipase (0.024 m2/g). The PVA‐nanofibers‐immobilized lipase were used as the catalyst for the esterification of (Z)‐3‐hexen‐1‐ol (leaf alcohol) with acetic acid in hexane. The activity of the nanofiber is equivalent to that of commercially available immobilized lipase (Novozym‐435). The ester conversions of the nanofibers, Novozym‐435, the film and lipase powder reached 99.5% at 5 h, 100% at 5 h, 11.5% at 6 h, and 81.1% at 5.75 h, respectively. The nanofibers‐immobilized lipase showed higher activity for the esterification than the film‐immobilized lipase and lipase powder, probably because it has high specific surface area and high dispersion state of lipase molecules in PVA matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
Ethanol—oleic acid esterification by a free and microencapsulated lipase from Mucor miehei, using dodecane as solvent and phosphatidylcholine as surfactant, was studied. The initial esterification rate was influenced by the water content in the biphasic system. Kinetic studies with free and microencapsulated enzyme showed that the microencapsulation led to an increase of the kinetic parameters (Vmax and Km), probably due to an increase of the interfacial area. The reaction rate was also affected by the shaking rate, the temperature and the pH. The optimal temperature and pH achieved were, respectively, 40°C and 4.5 using free enzyme, and 50°C and 6 using microencapsulated enzyme.  相似文献   

8.
Solvents are known to have strong impacts on the yields of equilibrium reactions. This work focuses on the thermodynamic investigation of these solvent effects on esterification reactions of acetic acid and propionic acid with ethanol. Esterification of acetic acid was performed in the solvents acetone, acetonitrile (ACN), dimethylformamide (DMF), and tetrahydrofurane as well as in mixtures thereof. ACN promotes the esterification of acetic acid, whereas it is strongly suppressed by DMF. The esterification of propionic acid was investigated with various reactant concentrations in acetone. The experimental equilibrium data in pure solvents and solvent mixtures were modeled using the thermodynamic equilibrium constant Ka and the reactant/product activity coefficients predicted by the perturbed chain‐statistical associating fluid theory (PC‐SAFT). For a given Ka, PC‐SAFT is able to predict the influence of the solvent and even solvent mixtures on the equilibrium concentrations of esterification in almost quantitative agreement with the experimental data. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3000–3011, 2015  相似文献   

9.
Microbial lipases (E.C. 3.1.1.3) are the preferred biocatalysts for the synthesis of various fragrance compounds, such as linalool acetate, citronellal acetate, and geranyl acetate, in organic solvents over chemical synthesis. In this study, a purified alkaline extracellular lipase of Pseudomonas aeruginosa MTCC‐4713 was efficiently immobilized onto a synthetic poly(AAc‐co‐HPMA‐cl‐EGDMA) hydrogel by surface adsorption, and the bound lipase was evaluated for its hydrolytic potential toward various p‐nitrophenyl acyl esters, which differed in their C‐chain length. Among four series of hydrogels prepared by the variation of the concentrations of monomer and crosslinker, two hydrogels, namely, I5d and I20d, that exhibited relatively higher protein (lipase activity) bindings were selected to perform hydrolytic and synthetic (geranyl butyrate) reactions in aqueous and organic solvents. The hydrogel‐bound lipase was highly hydrolytic toward p‐nitrophenyl ester (C: 16; p‐nitrophenyl palmitate). The hydrogel‐immobilized lipase was quite stable and retained approximately 57.6% of its original hydrolytic activity after the fifth cycle of reuse under optimized conditions (pH 8.5, 65°C). The hydrogel‐immobilized lipase when used to perform the esterification of geraniol/butyric acid (400 : 100 mM) in n‐heptane resulted in 98.8 mM geranyl butyrate at 65°C under shaking (120 rpm) after 15 h of reaction time. The addition of a molecular sieve (3 Å × 1.5 mm) to the reaction system at a concentration of 100 mg per reaction volume (1 mL) resulted in the complete conversion of the reactants into geranyl butyrate. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The effect of pressure on the esterification reaction of ethanol with water-immiscible organic acids, catalysed by a lipase from Mucor miehei (pH 4.5; 30°C), was studied through analysis of the kinetics and equilibrium parameters. An increase of the ethanol distribution between the aqueous and organic phases was observed by the addition of lipase and the increase of the pressure in the system. Furthermore, the enzyme showed high specificity for the acid substrate, esterifying preferentially long chain fatty acids (C8-C18). In the studies described oleic acid was used as substrate for the esterification reaction. A kinetic study with the free enzyme, showed that pressure affected the extraction system, increasing the maximum reaction rate (> Vmax), the affinity (< Km) and the specificity (> Vmax/Km = ksp) of the enzyme to the substrate, probably due to the effect of pressure on the electrostatic interactions in biological systems. The enzyme operational stability, at 30°C, improved significantly with the increase of pressure, having lower values for the deactivation constant (k) (8.3 × 10?3 h?1) and higher values for the half-life times (t1/2) (77 h) in comparison with those obtained under atmospheric pressure conditions (k = 2.3 × 10?2h?1; t1/2 = 30 h).  相似文献   

11.
A lipase preparation developed from Candida sp. 99‐125 was used for fatty acid alkyl ester synthesis by both enzymatic esterification of fatty acids, and transesterification of oils and fats. The lipase preparation was chosen based on screening of lipases from commercial sources as well as those produced in the laboratory. The effects of enzyme dosage, solvent types, water absorbent additions, inhibition of short‐chain alcohols, alcohol and acid types, molar ratio of substrates, and reusability of the lipase preparation in esterification were studied. Degree of esterification between oleic acid and methanol under optimal conditions reached 92%. Purity of the methyl ester after washing with water and distillation was 98%. Half‐life of the lipase preparation was calculated to be approximately 340 h. For transesterification of rapeseed oil with the same lipase preparation, the amount of methanol and mode of methanol addition to the reaction were also conducted. Transesterification of the oil with stepwise methanol addition reached 83% after 36 h reaction time.  相似文献   

12.
A series of triglyceride plasticizers were prepared from glycerol, acetic acid, and benzoic acid through a two‐step reaction to develop potential uses of glycerol. The optimum reaction conditions were determined by the esterification of glycerol and acetic acid to produce glyceryl triacetate. When the molar ratio of glycerol to benzoic acid to acetic acid was 1:1:3.5, a novel plasticizer triglyceride mixture (GTM) was successfully synthesized; it had a good plasticizing effect on poly(vinyl chloride) (PVC). The elongation at break of PVC composites containing 80 phr GTM increased around 350%; the corresponding hardness (Shore D) and tensile strength decreased to around 35 D and 20 MPa, respectively. Moreover, the glass‐transition temperature (Tg) of PVC composites containing 40 phr GTM decreased to around 50°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
The oxorhenium(V) chelates [ReOCl(N,O‐L)(PPh3)] [N,O‐L=(OCH2CH2)N(CH2CH2OH)(CH2COO) ( 2 ), (OCH2CH2)N(CH2COO)(CH2COOCH3) ( 3 )] and [ReOCl2(N,O‐L)(PPh3)] [N,O‐L=C5H4N(COO‐2) ( 4 ) C5H3N(COOCH3‐2)(COO‐6) ( 5 )] have been prepared by reaction of [ReOCl3(PPh3)2] ( 1 ), in refluxing methanol, with N,N‐bis(2‐hydroxyethyl)glycine [bicine; N(CH2CH2OH)2(CH2COOH)], N‐(2‐hydroxyethyl)iminodiacetic acid [N(CH2CH2OH)(CH2COOH)2], picolinic acid [NC5H4(COOH‐2)] or 2,6‐pyridinedicarboxylic acid [NC5H3(COOH‐2,6)2], respectively, with ligand esterification in the cases of 3 and 5 . All these complexes have been characterized by IR and multinuclear NMR spectroscopy, FAB+‐MS, elemental and X‐ray diffraction structural analyses. They act as catalysts, in a single‐pot process, for the carboxylation of ethane by CO, in the presence of potassium peroxodisulfate K2S2O8, in trifluoroacetic acid (TFA), to give propionic and acetic acids, in a remarkable yield (up to ca. 30%) and under relatively mild conditions, with some advantages over the industrial processes. The picolinate complex 4 provides the most active catalyst and the carboxylation also occurs, although much less efficiently, by the TFA solvent in the absence of CO. The selectivity can be controlled by the ethane and CO pressures, propionic acid being the dominant product for pressures about ca. 7 and 4 atm, respectively (catalyst 4 ), whereas lower pressures lead mainly to acetic acid in lower yields. These reactions constitute an unprecedented use of Re complexes as catalysts in alkane functionalization.  相似文献   

14.
Three Brønsted acidic imidazole dicationic ionic liquids (ILs) with different length of alkyl chains, [Cn(Mim)2][HSO4]2 (n = 3, 6, 12), were prepared and used as catalyst for the esterification reaction of free fatty acids and methanol. Taking oleic acid as model acid, the catalytic performances of the synthesized ILs for the esterification were evaluated. The main physicochemical properties of the ILs, thermal stability, acidity, solubility in common solvents, and causticity on Austenitic stainless steel 316, were examined. [C3(Mim)2][HSO4]2 demonstrated the highest catalytic activity and enabled to assess the preliminary optimum esterification condition of oleic acid and methanol. Under optimized reaction conditions, the yield of oleic acid methyl ester was up to 95 %. The ILs have great potential as catalysts for producing fatty acid methyl esters from long‐chain free fatty acids.  相似文献   

15.
Ethyl esterification specificity of a lipase from Rhizomucor miehei for polyunsaturated fatty acids (PUFA) was compared at 1 and 100 mM to study molecular recognition of PUFA. The chemical shift of methylene adjacent to carboxyl groups in the nuclear magnetic resonance spectrum of docosahexaenoic acid (DHA) in ethanol moved to a lower magnetic field as the concentration of DHA increased, suggesting that the degree of dissociation of DHA decreased. Specificity constants or apparent second-order rate constants (V max/K m or catalytic power) for 1 mM esterification by immobilized lipases were higher than the native lipase. Immobilized hydrophobic carrier of low mass transfer resistance for the esterification substrate may improve maximal velocity and affinity for the substrate. Higher specificity constants for 1 mM substrates were observed using immobilized lipases fixed on an anion exchange resin with glutaraldehyde and on a cation exchange carrier with carbodiimide. Activity yields measured with 1 mM PUFA substrate were high. For the substrates at a concentration of 100 mM, higher specific constants with these bifunctional reagents were not observed but higher activity yields were found.  相似文献   

16.
The activity of Chromobacterium viscosum lipase for hydrolysis of olive oil in sodium bis‐(2‐ethylhexyl) sulfosuccinate (AOT) reverse micelles was increased by pretreatment with acetone. In contrast to the untreated lipase, no sharp fall in the activity of the treated lipase at higher W0 (water to AOT molar ratio) values was observed. The fluorescence emission intensity of the treated lipase in reverse micelles was higher than that of the untreated lipase but the maximal emission wavelength (λmax) was the same for both lipases. A kinetic model that considers the free substrate in equilibrium with the substrate adsorbed on the micellar surface was successfully used to better understand the activity enhancement. The Michaelis constant (Km) and substrate adsorption equilibrium constant (Kad) were reduced by lipase pretreatment with acetone whereas the maximum reaction rate (vmax) remained unaltered. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
Magnetically separable mesoporous silica nanocomposites with polyoaniline functionalization (Pani‐MS@Fe3O4) were synthesized for the immobilization of lipase via electrostatic adsorption. The as‐prepared Pani‐MS@Fe3O4 nanocomposites as well as immobilized lipase were characterized by FTIR, XRD, HRTEM, FESEM, BET, and TGA techniques. The BET surface area was calculated to be 779.27 m2/g, 425 m2/g, and 230.45 m2/g for magnetic mesoporous nanoparticle (MS@Fe3O4), Pani‐MS@Fe3O4 nanocomposite, and lipase immobilized Pani‐MS@Fe3O4 nanocomposite respectively. The comparison experiments verified that the immobilized lipase exhibited slightly higher optimal pH and temperature value with a wider pH‐activity and temperature stability in comparison with the free lipase. From Michaelis–Menten kinetic study, the lower Km value (0.25 mM) and higher Vmax value (0.0341 mM/min) for the immobilized lipase revealed the higher affinity of immobilized lipase toward the substrate. Further, reusability studies of the immobilized lipase indicated that up to 70% of the original activity was retained after having been recycled seven times. POLYM. COMPOS. 37:1152–1160, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
Microbial lipases (E.C. 3.1.1.3) are preferred biocatalysts for the synthesis of esters in organic solvents. Various extracellular thermoalkaliphilic lipases have been reported from Pseudomonas sp. In the present study, a purified alkaline thermoalkalophilic extracellular lipase of Pseudomonas aeruginosa MTCC‐4713 was efficiently immobilized onto a synthetic poly(AAc‐co‐HPMA‐cl‐EGDMA) hydrogel by adsorption and the bound lipase was evaluated for its hydrolytic potential towards various p‐nitrophenyl acyl esters varying in their C‐chain lengths. The bound lipase showed optimal hydrolytic activity towards p‐nitrophenyl palmitate (p‐NPP) at pH 8.5 and temperature 45°C. The hydrolytic activity of the hydrogel‐bound lipase was markedly enhanced by the presence of Hg2+, Fe3+, and NH salt ions in that order. The hydrogel‐immobilized lipase (25 mg) was used to perform esterification in various n‐alkane(s) that resulted in ~ 84.9 mM of methyl acrylate at 45°C in n‐heptane under shaking (120 rpm) after 6 h, when methanol and acrylic acid were used in a ratio of 100 mM:100 mM, respectively. Addition of a molecular sieve (3Å × 1.5 mm) to the reaction system at a concentration of 100 mg/reaction vol (1 mL) resulted in a moderate enhancement in conversion of reactants into methyl acrylate (85.6 mM). During the repetitive esterification under optimum conditions, the hydrogel‐bound lipase produced 71.3 mM of ester after 10th cycle of reuse. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 183–191, 2007  相似文献   

19.
Flavonoid fatty esters were prepared by acylation of flavonoids (rutin and naringin) by fatty acids (C8, C10, C12), catalyzed by immobilized lipase from Candida antarctica in various solvent systems. The reaction parameters affecting the conversion of the enzymatic process, such as the nature of the organic solvent and acyl donor used, the water activity (aw) of the system, as well as the acyl donor concentration have been investigated. At optimum reaction conditions, the conversion of flavonoids was 50—60% in tert‐butanol at aw less than 0.11. In all cases studied, only flavonoid monoester was identified, which indicates that this lipase‐catalyzed esterification is regioselective.  相似文献   

20.
Lipase‐catalyzed enantioselective esterification between (R,S)‐ketoprofen and alkanediol in organic solvents was developed to produce (S)‐ketoprofen hydroxyalkyl esters. The acyl acceptor of 1,6‐hexanediol for the resolution of (R,S)‐ketoprofen yielded only the enantioselectivity (the enantiomeric ratio of initial rate for (S)‐ketoprofen to that of (R)‐ketoprofen) VS/VR = 8, when crude Lipase MY originating from Candida rugosa was used. However, isopropanol‐dried immobilized lipases (IPA‐dried IM‐lipase) effectively enhanced the enantioselectivity to greater than 20 in the esterification of (R,S)‐ketoprofen when 1,4‐butanediol, 1,5‐pentanediol or 1,6‐hexanediol was employed. IPA‐dried IM‐lipase and isooctane were selected to use for optimally immobilized lipase and reaction medium, respectively. The IPA‐dried IM‐lipase exhibited the highest enantioselectivity, E = 26.7, to the (S)‐enantiomer with 1,5‐pentanediol and the best enzyme activity to the (S)‐enantiomer with 1,4‐butanediol. The finding indicates that the carbon chain length of the alkanediol strongly affected the enzyme activity and enantioselectivity of lipase‐catalyzed esterification. A maximum enantioselectivity of 37 at 27 °C was generated by IPA‐dried IM‐lipase for the enantioselective esterification of racemic ketoprofen with 1,4‐butanediol. IPA‐dried IM‐lipase can effectively increase the enantioselectivity of lipase. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号