首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张文郁  赵宁  魏伟  孙予罕 《精细化工》2005,22(1):26-28,48
对碱土金属氧化物和两性氧化物等10种氧化物作为合成1 甲氧基 2 丙醇固体催化剂进行了催化性能筛选。发现在碱土金属氧化物MgO、CaO和BaO中,中强碱MgO具有较高的环氧丙烷(PO)转化率(71 07%)和1 甲氧基 2 丙醇(PPM)选择性(92 53%)。在两性氧化物中,ZnO具有较高的PO转化率(55 26%)和PPM选择性(92 37%)。系统考察了反应温度、催化剂用量、反应时间和原料摩尔配比对MgO、ZnO的催化作用特点的影响,发现MgO在催化性能和1 甲氧基 2 丙醇选择性方面表现出的综合性能优于其他催化剂。  相似文献   

2.
ZnO–CaO catalysts were prepared and tested for the synthesis of dimethyl carbonate (DMC) from urea and methanol. Meaningfully, the bi-functional catalysts ZnO–CaO exhibited noticeable DMC yield (41.2%) with the Zn/Ca molar ratio of 4:1, which might ascribe to the synergistic effect between ZnO and CaO. The plausible mechanism for the DMC synthesis was as follows: urea was activated to generate metal isocyanato group on the acid sites and subsequently nucleophilic attacked by the activated methanol on the basic sites.  相似文献   

3.
To investigate the nucleation of metal pimelate for isotactic polypropylene (iPP) crystallization, iPP filled with a series of metal oxides with and without metal pimelate on their surface was prepared. There was a chemical reaction between pimelic acid (PA) and metal oxides MgO, CaO, BaO or ZnO, but not TiO2. The corresponding metal pimelate formed by the chemical reaction between PA and MgO, CaO, BaO or ZnO had a different influence on the crystallization behavior and melting characteristics of iPP. Addition of metal oxides increased the crystallization temperature of iPP and mainly formed α‐phase due to the heterogeneous α‐nucleation of metal oxides. The α‐nucleation of CaO could be easily changed into β‐nucleation using CaO‐supported PA, and 90.1% β‐phase was obtained. The β‐nucleation of BaO could be markedly enhanced by barium pimelate formed using supported PA. However, no β‐phase was observed for iPP filled with MgO‐ or ZnO‐supported PA. The various metal oxides with supported PA had a different influence on the crystallization behavior and melting characteristics of iPP due to the different structure of metal pimelate formed by chemical reaction between PA and the metal oxides. Copyright © 2012 Society of Chemical Industry  相似文献   

4.
以碱土金属氧化物(MgO、CaO和BaO)作为裂解催化剂,在实验室自制的3 L裂解反应釜中对酸化油进行裂解脱氧制备烃类燃油。结果显示:3种碱土金属氧化物催化裂解酸化油所得液体燃油产率为70%~80%,特别是CaO和MgO作为裂解催化剂能够有效地脱氧,能够在较低的温度下获得更多的液体燃油,同时燃油的酸值低于20 mg/g。以硬脂酸钡、硬脂酸钙、硬脂酸镁为模型化合物研究废弃油脂裂解反应动力学,先进行热重分析,再利用分布活化能法对热重结果进行动力学参数计算,结果表明:硬脂酸钡、硬脂酸钙、硬脂酸镁的裂解活化能依次降低,分别为268,204和127 kJ/mol。以上结果表明:用MgO催化裂解酸化油能够在较低温度下收集更多的液体燃油,从而在较低温度下实现废弃油脂的裂解转化,有效降低反应能耗。  相似文献   

5.
Heterogeneous halide-free carbonylation of methanol to acetates, including methyl acetate (MA) and acetic acid, using non-precious metal catalysts has been a topic of interest for decades. The key issue is that the water produced by methanol dehydration inhibits the formation of acetyl species and reduces the MA selectivity. Here, we report that CuCeOx/H-mordenite (H-MOR) catalyst can nearly eliminate the inhibiting effect of water on carbonylation by a water-gas shift reaction (WGSR) on-site, and can thus achieve 96.5% methanol conversion with 87.4% MA selectivity for the halide-free carbonylation of methanol. The results of powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy show that the Cu and Ce species are highly dispersed on H-MOR even when the CuCeOx contents are as high as 29 wt-%. Fourier transform infrared spectroscopy and CO chemisorption analysis reveal that a small portion of Cu species can migrate into the channel of H-MOR when CuCeOx/H-MOR is calcined at 500 °C and these Cu species are converted into Cu+ sites upon reduction. The Cu+ sites facilitate the WGSR and are also active sites for methanol carbonylation. The introduction of Ce benefits the inhibition of coke deposits and thus enhances the catalyst stability.  相似文献   

6.
王旭慧  赵金仙  裴永丽  任军 《化工进展》2019,38(11):4956-4964
CO2是主要的温室气体。近年来随着工业的大力发展,CO2的排放量迅猛增加,严重影响着人类的生存环境。将CO2转化成有价值的化工产品,受到了研究领域的广泛关注。其中将CO2与产能过剩的甲醇作为原料,生产碳酸二甲酯(DMC),既能减少CO2排放,又能产生有价值的绿色产品DMC。本文简述了影响CO2转化的因素,即受热力学限制和CO2活化困难;重点介绍了具有酸碱活性中心的金属氧化物ZrO2、CeO2以及复合金属氧化物催化剂的催化性能和反应机理,并分析了影响催化活性的主要原因:表面酸碱性能决定了催化活性;进一步分析了催化剂表面的酸碱性来源于Lewis酸碱位和Br?nsted酸性位。对于开发高效的金属氧化物催化剂未来的研究方向提出了展望: 通过调控催化剂的晶相和形貌、增加氧空位和羟基官能团、掺杂碱性或者酸性物种来改变催化剂表面的酸碱性,并且向催化系统中添加脱水剂。最后指出了由于CO2分子的稳定性很难被活化,需进一步深入研究其活化CO2的机理,提高CO2的转化率。  相似文献   

7.
陈雪芳  熊莲  王璨  张海荣  陈新德 《硅酸盐通报》2017,36(12):4198-4204
将低品位凹凸棒石开发作为电焊条药皮辅料,根据电焊条药皮对辅料白度和金属氧化物的要求,系统研究了产自江苏盱眙的低品位凹凸棒石的水洗除杂、酸改性工艺,分析了水洗除杂、酸改性过程中的主要因素对凹凸棒石白度和金属氧化物的影响,获得了适宜的凹凸棒石水洗、酸改性工艺参数.实验结果表明,凹凸棒石经水洗除杂白度提高了17.2%,经酸改性后凹凸棒石白度达72.1,主要氧化物Al2 O3、Fe2 O3、MgO、CaO分别降低了28.5%、39.8%、50.7%和98.3%.并采用了红外(FT-IR)、X射线荧光光谱分析(XRD)、X射线荧光衍射仪(XRF)和扫描电镜(SEM)对改性前后的凹凸棒石组成、结构和外貌进行了表征分析.  相似文献   

8.
A series of ZSM-5 samples modified with metal oxides MO (M = Mg, Ca, Sr, Ba and Zn) were employed for the alkylation of 4-methylbiphenyl (4-MBP) with methanol to 4,4'-dimethylbiphenyl (4,4'-DMBP) under fixed-bed down-flow conditions. The methylation results showed that the use of basic metal oxides can effectively enhance the selectivity to the target product 4,4'-DMBP. MgO is the most effective modifier among the metal oxides used and it can improve selectivity to 4,4'-DMBP up to 80% as compared to only 13% over the parent zeolite HZSM-5. The modification effectiveness of metal oxides on 4,4'-DMBP selectivity can be arranged in the order MgO > SrO ZnO CaO > BaO. The optimization of MgO modification through the content, salt types and loading methods revealed that proper MgO loading (5.6 wt%) can be more effective, and the impregnation method is much better than ion exchange. The correlation of physicochemical properties (TPD, TGA, chemical analysis and chemical adsorption, etc.) of the modified HZSM-5 with the catalytic data showed that the high selectivity over ZSM-5 modified with MgO largely results from the effective suppression of 4,4'-DMBP secondary reactions such as isomerization, dealkylation and alkylation.  相似文献   

9.
10.
将纳米ZnO作为甲醇脱水制备二甲醚催化剂的组分,考察了纳米ZnO的含量对催化剂H4SiW12O40-La2O3/纳米ZnO:γ-Al2O3催化活性的影响。采用TPD和BET等技术探讨分析了纳米ZnO的加入与催化剂结构和表面性质的关系。结果表明:纳米ZnO增大了催化剂的比表面,改善了催化剂的孔结构,提高了催化剂活性组分分散度,增大了中等强度的酸量,提高了甲醇的转化率;催化剂H4SiW12O40-La2O3/纳米ZnO:γ-Al2O3(1:3)有最佳催化活性。  相似文献   

11.
李杰  屈一新  王水  王际东 《工业催化》2009,17(12):21-26
研究了利用金属氧化物进行载体γ-Al2O3改性对0.5%Pt-5%K2O/γ-Al2O3催化剂在环己酮二聚脱氢合成邻苯基苯酚反应中催化性能的影响。以La2O3、Ce2O3、MgO和CaO对γ-Al2O3载体进行改性,比较了4种金属氧化物对生成邻苯基苯酚收率的影响。结果表明,以CaO改性的催化剂可使邻苯基苯酚的收率显著提高。通过对使用CaO改性的条件进行研究,确定了最佳改性条件:CaO用量为γ-Al2O3质量的20%,焙烧温度600 ℃,焙烧时间5 h。以改性γ-Al2O3为载体制备的催化剂合成邻苯基苯酚收率达95.58%。利用XRD、XPS、H2-TPR和NH3-TPD对催化剂进行了表征,并结合催化剂的评价结果,对使用CaO进行载体改性后邻苯基苯酚收率提高的原因进行了探讨。  相似文献   

12.
Transesterification of palm kernel oil with methanol over mixed oxides of Ca and Zn has been investigated batchwise at 60 °C and 1 atm. CaO·ZnO catalysts were prepared via a conventional co-precipitation of the corresponding mixed metal nitrate solution in the presence of a soluble carbonate salt at near neutral conditions. The catalysts were characterized by using techniques of X-ray diffraction (XRD), scanning electron microscope (SEM), and thermogravimetric analysis (TGA). The results indicated that the mixed oxides possess relatively small particle sizes and high surface areas, compared to pure CaO and ZnO. Moreover, the combination of Ca and Zn reduced the calcination temperature required for decomposition of metal carbonate precipitates to active oxides. Influences of Ca/Zn atomic ratio in the mixed oxide catalyst, catalyst amount, methanol/oil molar ratio, reaction time, and water amount on the methyl ester (ME) content were studied. Under the suitable transesterification conditions at 60 °C (catalyst amount = 10 wt.%, methanol/oil molar ratio = 30, reaction time = 1 h), the ME content of >94% can be achieved over CaO·ZnO catalyst with the Ca/Zn ratio of 0.25. The mixed oxide can be also applied to transesterification of palm olein, soybean, and sunflower oils. Furthermore, the effects of different regeneration methods on the reusability of CaO·ZnO catalyst were investigated.  相似文献   

13.
Basic Zeolites: Characterization and Uses in Adsorption and Catalysis   总被引:5,自引:0,他引:5  
The presence of basic centers in some oxides has been recognized for a long time as being important in catalysis [1-4]. Usually both basic and acid sites exist simultaneously. The two centers may work independently or in a concerted way. For instance, in alcohol transformation, dehydration is favored on acidic sites and dehydrogenation on basic centers [3,5]. A large variety of materials are cited as having basic character. They include single-metal oxides (MgO, CaO, ZnO), supported alkali metals (Na/MgO, K/K2CO3), mixed-metal oxides (MgO-A12O3, ZnO-SiO2, MgO-TiO2), zeolites (X and Y saturated with alkaline cations of low electronegativity), hydrotalcite-type anionic clays, asbestoslike materials, carbon-supported basic catalysts, and basic organic resins.  相似文献   

14.
Theoretical Foundations of Chemical Engineering - A method for the preparation of nanosized powder metal oxides (Al2O3, MgO, and ZnO) has been developed by the sequential heat treatment of...  相似文献   

15.
The separation of methanol(MeOH) and dimethyl carbonate(DMC) is important but difficult due to the formation of an azeotropic mixture. In this work, isobaric vapor–liquid equilibrium(VLE) data for the ternary systems containing different imidazolium–based ionic liquids(ILs), i.e. MeOH + DMC + 1-butyl-3-methy-limidazolium bis[(trifluoromethyl)sulfonyl]imide([Bmim][Tf_2N]), MeOH + DMC + 1-ethyl-3-methyl-imidazolium bis[(trifluoromethyl)sulfonyl]imide([Emim][Tf_2N]), and MeOH + DMC + 1-ethyl-3-methylimidazolium hexafluorophosphate([Emim][PF6])) were measured at 101.3 kPa. The mole fraction of IL was varied from0.05 to 0.20. The experimental data were correlated with the NRTL and Wilson equations, respectively. The results show that imidazolium-based ILs were beneficial to improve the relative volatility of MeOH to DMC,and [Bmim][Tf_2 N] showed a much more excellent performance on the activity coefficient of MeOH. The interaction energies of system components were calculated using Gaussian program, and the effects of cation and anion on the separation coefficient of the azeotropic system were discussed.  相似文献   

16.
Catalytic effect of metal oxides on pyrolysis of sewage sludge   总被引:1,自引:0,他引:1  
The effect of metal oxides (Al2O3, CaO, Fe2O3, TiO2, and ZnO) on the pyrolysis of sewage sludge was investigated. The experiments were performed in a thermogravimetric analyzer (TGA) to check the pyrolysis behavior of raw sludge, demineralized sludge and demineralized sludge with metal oxides added, respectively. The results showed that the presence of Fe2O3 and ZnO probably inhibited the decomposition of organic matters in demineralized sludge samples to generate more solid residues, while Al2O3, CaO, and TiO2 promoted the degradation of organic matters throughout the whole pyrolysis temperature ranges. All the metal oxides studied accelerated the initial decomposition of sludge samples. Al2O3 and TiO2 might decrease the total pyrolysis time, while CaO, Fe2O3, and ZnO prolong pyrolysis time. The structure of demineralized sludge samples might be changed due to the addition of CaO, TiO2, and ZnO. Between 550 K and 750 K, the conversion of organic matters (mainly cellulose and lignin) in sludge samples was enhanced by Al2O3 and TiO2, but inhibited by CaO, Fe2O3, and ZnO. The effects of metal oxides on the weight loss rate of cellulose in demineralized sludge samples presented the following decreasing order of DE-ZnO > DE-TiO2 > DE-SS > DE-Al2O3 > DE-Fe2O3 > DE-CaO.  相似文献   

17.
18.
Light olefins(C_2–C_4) are fundamental building blocks for the manufacture of polymers, chemical intermediates,and solvents. In this work, we realized a composite catalyst, comprising Mn_xZr _yoxides and SAPO-34 zeolite,which can convert syngas(CO + H_2) into light olefins. Mn_xZr_yoxide catalysts with different Mn/Zr molar ratios were facilely prepared using the coprecipitation method prior to physical mixing with SAPO-34 zeolite. The redox properties, surface morphology, electronic state, crystal structure, and chemical elemental composition of the catalysts were examined using H_2-TPR, SEM, XPS, XRD, and EDS techniques, respectively. Tandem reactions involved activation of CO and subsequent hydrogenation over the metal oxide catalyst, producing methanol and dimethyl ether as the main reaction intermediates, which then migrated onto SAPO-34 zeolite for light olefins synthesis. Effects of temperature, pressure and reactant gas flow rate on CO conversion and light olefins selectivity were investigated in detail. The Mn_1Zr_2/SAPO-34 catalyst(Mn/Zr ratio of 1:2) attained a CO conversion of 10.8% and light olefins selectivity of 60.7%, at an optimized temperature, pressure and GHSV of 380 °C, 3MPa and 3000 h~(-1) respectively. These findings open avenues to exploit other metal oxides with CO activation capabilities for a more efficient syngas conversion and product selectivity.  相似文献   

19.
Topics in Catalysis - This study reported the synthesis and evaluation of mixed metal oxides MgO/Al2O3–TiO2 and ZnO/Al2O3–TiO2 as heterogeneous photocatalysts for the potential...  相似文献   

20.
The application of heterogeneous catalysts in dimethyl carbonate (DMC) synthesis from methanol is hindered by low activation efficiency of methanol to methoxy intermediates (CH3O*), which is the key intermediate for DMC generation. Herein, a catalyst of alkali metal K anchored on the CuO/ZnO oxide is rationally designed for offering Lewis acid–base pairs as dual active centers to improve the activation efficiency of methanol. Characterizations of CO2-TPD, NH3-TPD, XPS, and DRIFTS revealed that the addition of Lewis base K observably boosted the dissociation of methanol and combined with Lewis acid CuO/ZnO oxide to adsorb the formed CH3O* stably, thus synergistically promoted the transesterification. Finally, the CuO/ZnO-9%K2O catalyst exhibited the optimal catalytic activity, achieving a high yield of 74.4% with an excellent selectivity of 98.9% for DMC at a low temperature of 90°C. The strategy of constructing Lewis acid–base pairs provides a reference for the design of heterogeneous catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号