首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By technology down scaling in nowadays digital circuits, their sensitivity to radiation effects increases, making the occurrence of soft errors more probable. As a consequence, soft error rate estimation of complex circuits such as processors is becoming an important issue in safety- and mission-critical applications. Fault injection is a well-known and widely used approach for soft error rate estimation. Development of previous FPGA-based fault injection techniques is very time consuming mainly because they do not adequately exploit supplementary FPGA tools. This paper proposes an easy-to-develop and flexible FPGA-based fault injection technique. This technique utilizes debugging facilities of Altera FPGAs in order to inject single event upset (SEU) and multiple bit upset (MBU) fault models in both flip-flops and memory units. As this technique uses FPGA built-in facilities, it imposes negligible performance and area overheads on the system. The experimental results show that the proposed technique is on average four orders of magnitude faster than a pure simulation-based fault injection. These features make the proposed technique applicable to industrial-scale circuits.  相似文献   

2.
Due to the increased complexity of modern digital circuits, the use of simulation-based soft error detection methods has become cumbersome and very time-consuming. FPGA-based emulation provides an attractive alternative, as it can not only provide faster speed, but also handle highly complex circuits. In this work, a novel FPGA-based soft error detection technique is proposed, which enables detection of soft errors resulting from voltage pulses of different magnitudes induced by single-event transients (SETs). The paper analyzes the effect of transient injection location on soft error rate (SER) and applies the idea of transient equivalence to minimize resource overhead as well as speed-up emulation process. Switch-level implementations of ISCAS’85 benchmarks are designed using gate-level structures and experimental results are reported. The results show that an application of transient equivalence results in an emulation speed-up of 2.875 and reduces the memory utilization by 65%. An average soft error rate (SER) of 0.7-0.8 was achieved using the proposed strength-based detection with drain as transient injection location, showing that voltage pulses of magnitude smaller than logic threshold can eventually result in soft errors. Furthermore, the presented emulation-based soft error detection technique achieved significant speed-up of the order of 106 compared to a customized simulation-based method.  相似文献   

3.
In this paper we describe an FPGA-based approach to speed-up fault injection campaigns for the evaluation of the fault-tolerance of VLSI circuits. Suitable techniques are proposed, allowing emulating the effects of faults and observing faulty behavior. The proposed approach combines the efficiency of hardware-based techniques, and the flexibility of simulation-based techniques. Experimental results are provided showing that significant speed-up figures can be achieved with respect to state-of-the-art simulation-based fault injection techniques.  相似文献   

4.
Sedaghat  R. 《Electronics letters》2005,41(14):790-792
In past years various approaches to hardware-based fault injection using FPGA-based systems have been presented. Owing to the generation of additional faulty functions the mapping and a routable placement of the circuit into the FPGA are difficult to achieve. A technique is presented for estimating the routability, which guarantees the routability of the faulty circuit in the FPGA.  相似文献   

5.
This paper discusses the design, implementation, experimental validation, and performances of a field-programmable gate array (FPGA)-based real-time power converter failure diagnosis for three-leg fault tolerant converter topologies used in wind energy conversion systems (WECSs). The developed approach minimizes the time interval between the fault occurrence and its diagnosis. We demonstrated the possibility to detect a faulty switch in less than 10 $muhbox{s}$ by using a diagnosis simultaneously based on a “time criterion” and a “voltage criterion.” To attain such a short detection time, an FPGA fully digital implementation is used. The performances of the proposed FPGA-based fault detection method are evaluated for a new fault tolerant back-to-back converter topology suited for WECS with doubly fed induction generator (DFIG). We examine the failure diagnosis method and the response of the WECS when one of the power switches of the fault tolerant back-to-back converter is faulty. The experimental failure diagnosis implementation based on “FPGA in the loop” hardware prototyping verifies the performances of the fault tolerant WECS with DFIG.   相似文献   

6.
Modern nanometer circuits have become more prone to soft errors necessitating faster and more reliable error detection techniques. Simulation-based soft error detection has been popular but is limited by its inability to handle complex circuits and high run-time. FPGA-based soft error detection methods can be effectively used to overcome the speed limitation of simulation as well as handle circuits with much higher complexity. The paper presents a novel strength-based soft error emulation method targeting soft errors caused by transient pulses of magnitude less than logic threshold. The impact of transient injection location on soft error coverage is analyzed and the idea of using drain of a transistor as transient injection location is presented. Furthermore, the concept of transient equivalence is applied to minimize resource overhead as well as speed-up soft error detection process. Advanced switch-level models are designed using gate-level structure and used to implement switch-level equivalents of ISCAS’85 benchmarks. The experimental results reported for ISCAS’85 benchmarks show that an average soft error coverage of 0.7-0.8 was achieved using the proposed strength-based detection with drain as transient injection location. The application of transient equivalence resulted in speed-up of emulation by 2.875 and reduced the memory utilization by 65%. The emulation-based soft error detection achieved significant speed-up of the order of 106 as compared to a customized simulation-based method.  相似文献   

7.
随着新型电子器件越来越多地被机载航电设备所采用,单粒子翻转(Single Event Upset, SEU)故障已经成为影响航空飞行安全的重大隐患。首先,针对由于单粒子翻转故障的随机性,该文对不同时刻发生的单粒子翻转故障引入了多时钟控制,构建了SEU故障注入测试系统。然后模拟真实情况下单粒子效应引发的多时间点故障,研究了单粒子效应对基于FPGA构成的时序电路的影响,并在线统计了被测模块的失效数据和失效率。实验结果表明,对于基于FPGA构建容错电路,采用多时钟沿三模冗余(Triple Modular Redundancy, TMR) 加固技术可比传统TMR技术提高约1.86倍的抗SEU性能;该多时钟SEU故障注入测试系统可以快速、准确、低成本地实现单粒子翻转故障测试,从而验证了SEU加固技术的有效性。  相似文献   

8.
Design for Test of Asynchronous NULL Convention Logic (NCL) Circuits   总被引:1,自引:1,他引:0  
Due to the absence of a global clock and the presence of more state holding elements that synchronize the control and data paths, conventional Automatic Test Pattern Generation (ATPG) algorithms fail when applied to asynchronous circuits, leading to poor fault coverage. This paper presents a design for test (DFT) technique for a popular asynchronous design paradigm called NULL Convention Logic (NCL) aimed at making NCL designs testable using existing DFT tools with reasonable gate overhead. The proposed technique performs test points (TPs) insertion using Sandia Controllability and Observability Program (SCOAP) analysis to enhance the controllability of feedback nets and observability for fault sites that are flagged unobservable. An Automatic DFT Insertion Flow (ADIF) algorithm and a custom ATPG NCL primitive gates library are developed. The developed DFT technique has been verified on several NCL benchmark circuits
Sindhu KakarlaEmail:
  相似文献   

9.
This paper describes a non-recursive fault diagnosis technique for scan-based designs with convolutional test response compaction. The proposed approach allows a time-efficient and accurate identification of failing scan cells using Gauss–Jordan elimination method.
Jerzy Tyszer (Corresponding author)Email:
  相似文献   

10.
FPGA-based emulation of permanent faults in ASICs can considerably improve the fault simulation time compared to traditional software-based approaches. Moreover, a hardware-based solution provides realistic behavior during fault emulation which is often required in safety-critical systems' validation. Previous emulation approaches not only suffers from considerable area (for instrumentation) and reconfiguration (for fault injection) overheads but also provides limited coverage of the target faults (and fault sites). The latter is due to difficulties in establishing a fault model equivalence when the ASIC structural netlist is passed through the design automation phases of an FPGA. This paper presents a novel approach for fast emulation of permanent faults in ASICs on state-of-the-art dynamically reconfigurable SRAM-based FPGAs while achieving fault model equivalence. Our proposed approach leverages localized run-time in-place Look Up Table (LUT) reconfigurations to avoid the time-consuming bitstream generation process for every ASIC fault. Moreover, the speed of fault injection is enhanced by direct LUT configuration data modification inside a bitstream frame. This results in 17 and 4 times improvements in fault injection speeds over vendor-provided LUT modification libraries and existing partial bitstream based approaches respectively. However, this improvement is achieved at an average 1.2 and 1.1 times degradation in area and delay metrics for the considered mapped circuits which is affordable considering the benefits in terms of the emulation speed.  相似文献   

11.
The Secure Hash Algorithm is the most popular hash function currently used in many security protocols such as SSL and IPSec. Like other cryptographic algorithms, the hardware implementation of hash functions is of great importance for high speed applications. Because of the iterative structure of hash functions, a single error in their hardware implementation could result in a large number of errors in the final hash value. In this paper, we propose a novel time-redundancy-based fault diagnostic scheme for the implementation of SHA-1 and SHA-512 round computations. This scheme can detect permanent as well as transient faults as opposed to the traditional time redundancy technique which is only capable of detecting transient errors. The proposed design does not impose significant timing overhead to the original implementation of SHA-1 and SHA-512 round computation. We have implemented the proposed design for SHA-1 and SHA-512 on Xilinx xc2p7 FPGA. It is shown that for the proposed fault detection SHA-1 and SHA-512 round computations, there are, respectively, 3% and 10% reduction in the throughput with 58% and 30% area overhead as compared to the original schemes. The fault simulation of the implementation shows that almost 100% fault coverage can be achieved using the proposed scheme for transient and permanent faults.  相似文献   

12.
Timing violations, also known as delay faults, are a major source of defective silicon in modern Integrated Circuits (ICs), designed in Deep Sub-micron (DSM) technologies, making it imperative to perform delay fault testing in these ICs. However, DSM ICs, also suffer from limited controllability and observability, which impedes easy and efficient testing for such ICs. In this paper, we present a novel Design for Testability (DFT) scheme to enhance controllability for delay fault testing. Existing DFT techniques for delay fault testing either have very high overhead, or increase the complexity of test generation significantly. The DFT technique presented in this paper, exploits the characteristics of CMOS circuit family and reduces the problem of delay fault testing of scan based sequential static CMOS circuits to delay fault testing of combinational circuits with complete access to all inputs. The scheme has low overhead, and also provides significant reduction in power dissipation during scan operation.
Manuel d’AbreuEmail:
  相似文献   

13.
Single event transient (SET) fault analysis is usually performed through digital simulation at the gate level. However, this method cannot be used for large fault injection campaigns, since gate level simulation is quite slow. In this paper, we propose an approach to build an FPGA based SET emulator, which implements a quantized delay model of the circuit under evaluation. Experimental results demonstrate that the quantized delay model produces accurate results and can be easily captured in an FPGA. The proposed approach can be automated to increase SET fault analysis performance by three orders of magnitude with respect to simulation.
Marta Portela GarcíaEmail:
  相似文献   

14.
The secret key used in a cryptosystem can be retrieved by physical attacks such as side-channel analysis (SCA) and fault analysis (FA) attacks. Traditionally, countermeasures for different physical attacks are developed in a separate fashion. To lay a solid foundation for countermeasure development for the emerging combined attacks, it is imperative to thoroughly study how the countermeasure for one attack affects the efficiency of other attack. In this work, we use a FPGA-based platform to investigate whether and how the FA countermeasure can influence the efficiency of the correlation power analysis (CPA) attack. Unlike the previous work using simulations on the S-Box only, our assessments are based on the FPGA emulation of the entire AES. In addition to considering different error detection codes, we compare the key retrieval speed of the CPA attack in the scenarios of using different power models, redundancy types for fault detection, modules under fault protection, and practical FPGA synthesis optimization. Furthermore, we propose a new countermeasure that integrates dynamic masking and error deflection to simultaneously thwart CPA and FA attacks. Experimental results show that for 100,000 power traces, our method successfully prevents the key leakage while other methods leak at least five AES subkey bytes. Meanwhile, our simulation also confirms that the proposed method reduces the success rate of FA attacks by up to 90 % over the other methods.  相似文献   

15.
Soft error modeling and remediation techniques in ASIC designs   总被引:1,自引:0,他引:1  
Soft errors due to cosmic radiations are the main reliability threat during lifetime operation of digital systems. Fast and accurate estimation of soft error rate (SER) is essential in obtaining the reliability parameters of a digital system in order to balance reliability, performance, and cost of the system. Previous techniques for SER estimation are mainly based on fault injection and random simulations. In this paper, we present an analytical SER modeling technique for ASIC designs that can significantly reduce SER estimation time while achieving very high accuracy. This technique can be used for both combinational and sequential circuits. We also present an approach to obtain uncertainty bounds on estimated error propagation probability (EPP) values used in our SER modeling framework. Comparison of this method with the Monte-Carlo fault injection and simulation approach confirms the accuracy and speed-up of the presented technique for both the computed EPP values and uncertainty bounds.Based on our SER estimation framework, we also present efficient soft error hardening techniques based on selective gate resizing to maximize soft error suppression for the entire logic-level design while minimizing area and delay penalties. Experimental results confirm that these techniques are able to significantly reduce soft error rate with modest area and delay overhead.  相似文献   

16.
17.
于婷婷  陈雷  李学武  王硕  周婧 《微电子学》2017,47(4):553-556, 561
基于静态随机存储器的现场可编程逻辑门阵列应用于航天电子系统时,易受到单粒子翻转效应的影响,存储数据会发生损坏。为评估器件和电路在单粒子翻转效应下的可靠性,提出一种基于TCL脚本控制的故障注入系统,可在配置码流层面模拟单粒子翻转效应。介绍了该故障注入系统的实现机制和控制算法,并将该软件控制方法与传统硬件控制方法进行对比分析。设计了一种关键位故障模型,从设计网表中提取关键位的位置信息,缩小了故障注入的码流范围。在Virtex-5开发板XUPV5-LX110T上的故障注入实验表明,该故障注入系统能有效模拟单粒子翻转效应,与传统随机位故障注入相比,关键位故障注入的故障率提高了近5倍。  相似文献   

18.
王晶  荣金叶  周继芹  于航  申娇  张伟功 《电子学报》2018,46(10):2534-2538
针对现有容错计算机故障注入方法缺乏对空间环境中频发的单粒子故障模型的支持,本文提出了一种利用背板技术的软硬件协同仿真与故障注入技术,分别针对寄存器部件和存储器部件的特性,设计了多位错误的单粒子故障模型,在寄存器传输级实现了通过软件生成故障并注入到硬件设计中的软硬件协同故障注入方案,避免了在硬件设计中修改代码生成故障破坏系统完整性的问题.基于Leon2内核的故障注入实验表明,本文设计的平台为处理器容错设计提供了一个自动化、非侵入、低开销的故障注入和可靠性评估方案.  相似文献   

19.
阐述了系统中断扩展的方法,并分析了其优缺点.基于常用的微处理器 FPGA系统构架,提出了一种基于FPGA的外部中断管理扩展方法,可以充分利用FPGA的优点,从而克服传统方法的不足.  相似文献   

20.
SRAM-based field programmable gate arrays (FPGAs) are particularly sensitive to single event upsets caused by high-energy space radiation. Single Event Upset (In order to successfully deploy the SRAM-FPGA based designs in aerospace applications, designers need to adopt suitable hardening techniques. In this paper, we describe novel hybrid time and hardware redundancy (HT&HR) structures to mitigate SEU effects on FPGA, especially digital circuits that are designed with bidirectional ports. The proposed structures that combine time and hardware redundancy decrease the SEU propagation mechanisms among the redundant hard units. Analysis results and fault injection experiments on some standard ISCAS benchmarks and MicroLAN protocol, as a case study over the bidirectional ports, show that the capability of tolerating SEU effects in HT&HR technique increases up to 70 times with respect to solely hardware redundant versions. On average, the proposed method provides 39.2 times improvement against single upset faults and 14.9 times for double upset faults; however it imposes about 14.7% area overhead. Also, for the considered benchmarks, HT&HR circuits become 8.8% faster on the average than their TMR versions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号