首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under anaerobic conditions, cytochromes P450 can reductivelydehalogenate heavily halogenated hydrocarbons, such as one-and two-carbon organic solvents. This catalytic capacity hasdrawn attention to the potential use of engineered forms ofP450s in the remediation of contaminated deep subsurface ecosystems.Loida (1994, PhD Thesis, University of Illinois at Urbana-Champaign,IL) and S.G.Sligar (personal communication) have observedrecentlythat an active-site variant of cytochrome P450cam (F87W) dechlorinatespentachloroethane approximately three times faster than thewild-type enzyme. Molecular dynamics simulations have revealedthat the mutant enzyme binding pocket remains smaller, and thatpentachloroethane assumes configurations closer to the heme-Fein the F87W mutant twice as often as in the wild-type enzyme.This result is consistent with a collisional model of dehalogenation,which agrees with experimental observations [Li and Wackett(1993) Biochemistry, 32, 9355–9361] that solutions containingwild-type P450cam dehalogenate pentachloroethane 100 times fasterthan those containing free heme. The simulations suggest thatit is unlikely that Trp87 significantly stabilizes the developingnegative charge on the substrate during carbon-halogen bondreduction. The design of improved microbiai enzymes that incorporateboth steric and electronic effects continues for use in remediatinghalogenated contaminants in situ  相似文献   

2.
A 3-D model of human thromboxane A2 synthase (TXAS) was constructedusing a homology modeling approach based on information fromthe 2.0 crystal structure of the hemoprotein domains of cytochromeP450BM-3 and P450cam. P450BM-3 is a bacterial fatty acid monooxygenaseresembling eukaryotic microsomal cytochrome P450s in primarystructure and function. TXAS shares 26.4% residue identity and48.4% residue similarity with the P450BM-3 hemoprotein domain.The homology score between TXAS and P450BM-3 is much higherthan that between TXAS and P450cam. Alignment between TXAS andthe P450BM-3 hemoprotein domain or P450cam was determined throughsequence searches. The P450BM-3 or P450cam main-chain coordinateswere spplied to the TXAS main chain in those sements where thetwo sequences were well aligned. These segments were linkedto one another using a fragment search method, and the sidechains were added to produce a 3-D model for TXAS. A TXAS substrate,prostaglandin H2 (PGH2) was docked into the TXAS cavity correspondingto the arachidonic acid binding pocket in P450BM-3 or camphorbinding site in P450cam. Regions of the heme and putative PGH2binding cavities in the TXAS model were identified and analyzed.The segments and residues involved in the active-site pocketof the TXAS model provide reasonable candidates for TXAS proteinengineering and inhibitor design. Comparison of the TXAS modelbased on P450BM-3 with another TXAS model based on the P450BM-3with another TXAS model based on the P450cam structure indicatedthat P450BM-3 is a more suitable template for homology modelingof TXAS.  相似文献   

3.
The {alpha}/{beta} hydrolase fold   总被引:1,自引:0,他引:1  
We have identified a new protein fold—the /ßhydrolase fold—that is common to several hydrolytic enzymesof widely differing phylogenetic origin and catalytic function.The core of each enzyme is similar: an /ß sheet, notbarrel, of eight ß-sheets connected by -helices. Theseenzymes have diverged from a common ancestor so as to preservethe arrangement of the catalytic residues, not the binding site.They all have a catalytic triad, the elements of which are borneon loops which are the best-conserved structural features inthe fold. Only the histidine in the nucleophile-histidine-acidcatalytic triad is completely conserved, with the nucleophileand acid loops accommodating more than one type of amino acid.The unique topological and sequence arrangement of the triadresidues produces a catalytic triad which is, in a sense, amirror-image of the serine protease catalytic triad. There arenow four groups of enzymes which contain catalytic triads andwhich are related by convergent evolution towards a stable,useful active site: the eukaryotic serine proteases, the cysteineproteases, subtilisins and the /ß hydrolase fold enzymes.  相似文献   

4.
Hie structure of E.coli soluble inorganic pyrophosphatase hasbeen refined at 2.7 resolution to an R-factor of 20.9. Theoverall fold of the molecule is essentially the same as yeastpyrophosphatase, except that yeast pyrophosphatase is longerat both the N- and C-termini. Escherichia coli pyrophosphataseis a mixed +ß protein with a complicated topology.The active site cavity, which is also very similar to the yeastenzyme, is formed by seven ß-strands and an -helixand has a rather asymmetric distribution of charged residues.Our structure-based alignment extends and improves upon earliersequence alignment studies; it shows that probably no more than14, not 15–17 charged and polar residues are part of theconserved enzyme mechanism of pyrophosphatases. Six of theseconserved residues, at the bottom of the active site cavity,form a tight group centred on Asp70 and probably bind the twoessential Mg+ ions. The others, more spreadout and more positivelycharged, presumably bind substrate. Escherichia coli pyrophosphatasehas an extra aspartate residue in the active site cavity, whichmay explain why the two enzymes bind divalent cation differently.Based on the structure, we have identified a sequence motifthat seems to occur only in soluble inorganic pyrophosphatases.  相似文献   

5.
The substrate-binding region of the cell-envelope proteinaseof Lactococcus lactis strain SK11 was modelled, based on sequencebomology of the catalytic domain with the serine proteinasessubtilisin and thermitase. Substitutions, deletions and insertionswere introduced, by site-directed and cassette mutagenesfe ofthe prtP gene encoding this enzyme, based on sequence comparisonboth with subtilisin and with the homologous L.lactis strainWg2 proteinase, which has different proteolytic properties.The engineered enzymes were investigated for thermal stability,proteolytic activity and cleavage specificity towards smallchromogenk peptide substrates and the peptide g1-casein(l–23).Mutations in the subtilisin-like substrate-binding region showedthat Ser433 is the active site residue, and that residues 138and 166 at either side of the binding cleft play an importantrole in substrate specificity, particularly when these residuesand the substrate are oppositely charged. The K748T mutationin a different domain also affected specificity and stability,suggesting that this residue is in close proximity to the subtilisin-likedomain and may form part of the substratebinding site. Severalmutant SK11 proteinases have novel properties not previouslyencountered in natural variants. Replacements of residues 137–139AKTalong one side of the binding cleft produced the 137–139GPPmutant proteinase with reduced activity and narrowed specificity,and the 137–139GLA mutant with increased activity andbroader specificity. Furthermore, the 137–139GDT mutanthad a specificity towards g1,-casein(l–23) closely resemblingthat of L.lactis Wg2 proteinase. Mutants with an additionalnegative charge in the binding region were more stable towardsautoproteolysis.  相似文献   

6.
The C-terminal boundary of primary sequence of the Bacillussubtilis PAP115 endo-ß-1,4-glucanase (EG) requiredfor stable catalytic activity has been mapped by site-directedmutagenesis using Escherichia coli as host. The 52 kDa cel geneproduct, EG470 and a 33 kDa mutant (EG300), lacking 170 residuesthrough a nonsense mutation at the leucine-330 codon of thegene, exhibited similar patterns of enzymatic activity and pHoptima using cellooligopentaose as substrate.CD spectra indicatedthat the bulk of the -helical secondary structure in EG470 wascontained within EG300. However, relative to EG470, the specificactivity of EG300 was 3- to 4-fold lower with amorphous celluloseas substrate and {small tilde}4-to5-fold higher with carboxymethylcellulose(soluble cellulose).These results along with data which showthat EG470 binding capacity to mirocrystalline cellulose is{small tilde} 11 times more than that of EG300, demonstratethe importance of residues 330–499 for non-catalytic bindingof cellulose. A construct of the cel gene carrying a deletionof codons 330–499 and an insertion of a nonsense codonat leucine-330, was further used to make mutants EG296 and EG291with nonsense codon substitutions at arginine and serine-321,respectively.Western analysis using EG-specific antiserum revealedthat relative losses in enzymatic activity of EG296 (50%) andEG291 (95%) could be accounted for by the extent of their proteolysis,signifying a marked destabilization of these enzymes by removalof only a few amino acids.  相似文献   

7.
Recent mutagenesis studies nave identified a stretch of aminoacid residues which form the ion-selective pore of the voltage-gatedpotassium channel. It has been suggested that this sequenceof amino acids forms a ß-barrel structure making upthe structure of the ion-selective pore [Hartman,H.A., Kirsch,G.E.,DreweJ.A., Taglialatela.M., Joho.R.H. and Brown,A.M. (1991)Science, 251, 942–944; YeUen.G., Jurman,M.E., Abramson,T.and MacKinnon,R. (1991) Science, 251, 939–942; Yool,AJ.and Schwarz.T.L. (1991) Nature, 349, 700–704]. We havesynthesized a polypeptide corresponding to this amino add sequence(residues 431–449 of the ShA potassium channel from Drosophila).A tetrameric version of this sequence was also synthesized byUnking together four of these peptldes onto a branching lysinecore. Fourier transform infrared (FT-LR) and circular dichroism(CD) spectroscopy have been used to investigate the structureof these peptides after their reconstitution into lyso phos-phatidylcholinemicelles and lipid bilayers composed of dimyristoyl phosphatidyfcholineand dimyristoyl phosphatidyl-glycerol. The spectroscopic studiesshow that these peptides are predominantly a-helical in theselipid environments. When Incorporated into planar lipid bilayersboth peptides induce ion channel activity. Molecular modellingstudies based upon the propensity of these peptides to forman -helical secondary structure in a hydrophobfc environmentare described. These results are discussed in the light of recentmutagenesis and binding studies of the Drosophila Shaker potassiumion channel protein  相似文献   

8.
We had reported engineering of the heme monooxygenase cytochrome P450cam from Pseudomonas putida with the F87W/Y96F/L244A/V247L mutations for the oxidation of pentachlorobenzene (PeCB), a recalcitrant environmental contaminant, to pentachlorophenol. In order to provide further insights into P450 structure, function and substrate recognition, we have determined the crystal structure of this 4-mutant without a substrate and its complex with PeCB. PeCB is bound face-on to the heme, with a weak Fe--Cl interaction. One PeCB chlorine is located in the cavity generated by the L244A mutation, in striking illustration of the role of this mutation in promoting PeCB binding. The structures also show that the P450(cam) oxygen-binding groove between G248 and T252 is flexible and can tolerate significant deviations from their conformations in the wild type without loss of enzyme activity. Analysis of the PeCB binding interactions led to introduction of the T101A mutation to enable the substrate to reorient during the catalytic cycle for more efficient oxidation. The resultant 5-mutant F87W/Y96F/T101A/L244A/V247L is 3-fold more active for PeCB oxidation than the 4-mutant. Polychlorinated benzene binding by the mutants and the partitioning between substrate oxidation and non-productive (uncoupling) side reactions are correlated with the structural data.  相似文献   

9.
The main component of the amyloid senile plaques found in Alzheimer'sbrain is the amyloid-ß-peptide (Aß), a proteolyticproduct of a membrane precursor protein. Previous structuralstudies have found different conformations for the Aßpeptide depending on the solvent and pH used. In general, theyhave suggested an -helix conformation at the N-terminal domainand a ß-sheet conformation for the C-terminal domain.The structure of the complete Aß peptide (residues 1–40)solved by NMR has revealed that only helical structure is presentin Aß. However, this result cannot explain the large ß-sheetAß aggregates known to form amyloid under physiologicalconditions. Therefore, we investigated the structure of Aßby molecular modeling based on extensive homology using theSmith and Waterman algorithm implemented in the MPsrch program(Blitz server). The results showed a mean value of 23% identitywith selected sequences. Since these values do not allow a clearhomology to be established with a reference structure in orderto perform molecular modeling studies, we searched for detailedhomology. A 28% identity with an /ß segment of a triosephosphateisomerase (TIM) from Culex tarralis with an unsolved three-dimensionalstructure was obtained. Then, multiple sequence alignment wasperformed considering Aß, TIM from C.tarralis and anotherfive TIM sequences with known three-dimensional structures.We found a TIM segment with secondary structure elements inagreement with previous experimental data for Aß. Moreover,when a synthetic peptide from this TIM segment was studied invitro, it was able to aggregate and to form amyloid fibrils,as established by Congo red binding and electron microscopy.The Aß model obtained was optimized by molecular dynamicsconsidering ionizable side chains in order to simulate Aßin a neutral pH environment. We report here the structural implicationsof this study.  相似文献   

10.
The catalytic histidine of human neutrophil elastase was replacedwith alanine (H57A) to determine if a substrate histidine couldsubstitute for the missing catalytic group—`substrate-assistedcatalysis'. H57A and wild-type elastase were recovered directlyfrom Pichia pastoris following expression from a synthetic genelacking the elastase pro sequence, thereby obviating the needfor zymogen activation. Potential histidine-containing substratesfor H57A elastase were identified from a phage library of randomizedsequences. One such sequence, REHVVY, was cleaved by H57A elastasewith a catalytic efficiency, kcat/KM, of 2800 s–1 M–1,that is within 160-fold of wild-type elastase. In contrast,wild-type but not H57A elastase cleaved the related non-histidinecontaining sequence, REAVVY. Ten different histidine-containinglinkers were cleaved by H57A elastase. In addition to the requirementfor a P2 histidine, significant preferences were observed atother subsites including valine or threonine at P1, and methionineor arginine at P4. A designed sequence, MEHVVY, containing thepreferred residues identified at each subsite proved to be amore favorable substrate than any of the phage-derived sequences.Extension of substrate-assisted catalysis to elastase suggeststhat this engineering strategy may be widely applicable to otherserine proteases thereby creating a family of highly specifichistidine-dependant proteases.  相似文献   

11.
Binding free energy calculations for P450cam-substrate complexes   总被引:2,自引:0,他引:2  
A recently proposed semi-empirical method for calculating bindingfree energies was used to examine the binding of a variety ofsubstrates to cytochrome P450cam. For a set of 11 differentpotential substrates of cytochrome P450cam, both the absoluteand relative binding free energies were generally well reproduced.The mean error in the calculated absolute binding free energyfor all 11 compounds is 0.55 kcal/mol. Forty-eight out of 55calculated relative binding free energies have the correct signand the mean unsigned error between calculated and experimentalrelative binding free energies is 0.77 kcal/mol. For one substrate,thiocamphor, the effect of substrate orientation on the calculatedbinding free energy was examined. The ability of this methodto predict the effect of active site mutations was also examinedin two cases.  相似文献   

12.
Sixteen primary sequences from five sub-families of fungal,yeast and bacterial glucoamylases were related to structuralinformation from the model of the catalytic domain of Aspergillusawamori var. X100 glucoamylase obtained by protein crystallography.This domain is composed of thirteen -belices, with five conservedregions defining the active site. Interactions between methyl-maltoside and active site residues were modelled, and the importanceof these residues on the catalytic action of different glucoamylaseswas shown by their presence in each primary sequence. The overallstructure of the starch binding domain of some fungal glucoamylaseswas determined based on homology to the Cterminal domains ofBacillus cyclodextrin glucosyltransferases. Crystallographyindicated that this domain contains 6–8 ß-strandsand homology allowed the attribution of a disulfide bridge inthe glucoamylase starch binding domain. Glucoamylase residuesThr525, Asn530 and Trp560, homologous to Bacillus stearothermophiluscyclodextrin glucosyltransferase residues binding to maltosein the Cterminal domain, could be involved in raw-starch binding.The structure and length of the linker region between the catalyticand starch binding domains in fungal glucoamylases can varysubstantially, a further indication of the functional independenceof the two domains.  相似文献   

13.
A method for comparison of protein sequences based on theirprimary and secondary structure is described. Protein sequencesare annotated with predicted secondary structures (using a modifiedChou and Fasman method). Two lettered code sequences are generated(Xx, where X is the amino acid and x is its annotated secondarystructure). Sequences are compared with a dynamic programmingmethod (STRALIGN) that includes a similarity matrix for boththe amino acids and secondary structures. The similarity valuefor each paired two-lettered code is a linear combination ofsimilarity values for the paired amino acids and their annotatedsecondary structures. The method has been applied to eight globinproteins (28 pairs) for which the X-ray structure is known.For protein pairs with high primary sequence similarity (>45%),STRALIGN alignment is identical to that obtained by a dynamicprogramming method using only primary sequence information.However, alignment of protein pairs with lower primary sequencesimilarity improves significantly with the addition of secondarystructure annotation. Alignment of the pair with the least primarysequence similarity of 16% was improved from 0 to 37% ‘correct’alignment using this method. In addition, STRALIGN was successfullyapplied to seven pairs of distantly related cytochrome c proteins,and three pairs of distantly related picornavirus proteins.  相似文献   

14.
Glutamine amidotransferase (GAT) subunits or domains catalyzean important partial reaction in many complex biosynthetic reactions.The structure of one member of the F-type GATs is known, butthe structure of the unrelated G-type is still unknown. Becausemany protein sequences are available for anthranilate synthasecomponent II (product of the trpG gene), we have predicted itsaverage secondary structure by a joint prediction method [Niermannand Kirschner (1991a) Protein Engng, 4, 359–370]. Thepredicted eight ß-strands and seven -helices followan 8-fold cyclic repetition of a ß-strand-loop--helix-loopmodule with helix 7 missing. This pattern of secondary structuresuggests that the G-type GAT domain has an 8-fold ß-barreltopology, as found first in triose phosphate isomerase (TIM-barrel).This model is supported by the location of known catalyticallyessential residues in loops between (ß-strands and-helices. Evidence from published sequencing and mutationalstudies on selected members of the GAT superfamily (carbamoylphosphate, imidazoleglycerol phosphate, GMP and CTP synthases)support both the secondary structure prediction and the TIM-barreltopology.  相似文献   

15.
Cytochrome P450s IIA1 and IIA2, encoded by the CYP2A1 and CYP2A2genes, display 88% amino acid sequence similarities. The dissimilaritiesof sequence between these two enzymes are primarily localizedwithin four discrete regions of the polypeptides that are separatedby regions of absolute sequence identity. IIA1 specificallyhydroxylates the prototype substrate testosterone at the 7 and6 position with a predominance of 7 metabolite. IIA2, on theother hand, hydroxylates this steroid at eight positions onthe molecule, with one of the most abundant metabolites being15hydroxytestosterone. To determine those amino acids responsiblefor the difference in testosterone hydroxylation specificities,chimeras were constructed between IIA1 and IIA2 cDNAs and expressedin cell culture using vaccinia-virus-mediated cDNA expression.Chimeras, in which the first 355 amino acids correspond to asingle enzyme, maintain the specificity associated with thatenzyme. Of six chimeras which have substitutions between aminoacids 161 and 276, two are inactive and the remaining four givesimilar metabolite profiles, in which both 7 and 15 hydroxylationspecificities have been lost. Two of these four chimeras arediametric apposites, suggesting that modification of eitherthe N-terminal or central regions of the enzymes results inconformational changes that prevent the specific binding interactionsresponsible for the narrow regioselectivity associated withIIA1 and 15-hydroxytestosterone formation associated with IIA2.  相似文献   

16.
Fungal glucoamylases contain four conserved regions. One regionfrom the Aspergillus niger enzyme contains three key carboxylicacid residues, the general acid catalytic group, Glu179, alongwith Asp176 and Glu180. Three site-directed mutations, Leu177– His, Trp178 – Arg and Asn182 – Ala, wereconstructed near these acidic groups to reveal the functionof other conserved residues in this region. Leu177 and Trp178are strictly conserved among fungal glucoamylases, while anamide, predominantly Asn, always occurs at position 182. Substitutionsof Leu177 or Trp178 cause significant decreases in kcat withthe substrates tested. Similar increases in activation energiesobtained with Leu177 – His with both -(1,4)- and -(1,6)-linkedsubstrates indicate Leu177 is located in subsite 1. KM valuesobtained with the Trp178 – Arg mutation increase for an-(1,6)-linked substrate, but not for -(1,4)-linked substrates.Calculated differences in activation energy between substratesindicate Trp178 interacts specifically with subsite 2. The Asn182 Ala mutation did not change kcat or KM values, indicating thatAsn182 is not crucial for activity. These results support amechanism for glucoamylase catalytic activity consisting ofa fast substrate binding step followed by a conformational changeat subsite 1 to stabilize the transition state complex.  相似文献   

17.
The lipase produced by Pseudomonas glumae is monomeric in thecrystalline state and has a serine protease-like catalytic triad;Ser87-His285-Asp263. The largest domain of the protein resemblesclosely a subset of the frequently observed /ß-hydrolasefold and contains a well-defined calcium site. This paper describesstructural analysis of this protein, focusing on (i) structuralcomparison with the lipase from Geotrichum candidum, (ii) theprobable nature of the conformational change involved in substratebinding and (iii) structural variations amongst the family ofPseudomonas Upases. This analysis reveals similarities betweenP.glumae lipase and G.candidum lipase involving secondary structuralelements of the hydrolase core and the loops carrying the catalyticserine and histidine residues. A possible functional equivalencehas also been identified between parts of the two moleculesthought to be involved in a confonmational change. In addition,determination of the structure of P.glumae lipase has allowedrationalization of previously reported protein engineering experiments,which succeeded in improving the stability of the enzyme withrespect to proteolysis.  相似文献   

18.
The 6-phospho-ß-galactosidase of Staphylococcus aureus,Lactococcus lactis and Lactobacillus casei and 6-phospho-ßglucosidaseB of Escherichia coli build a subfamily inside a greater enzymefamily, named the glycosal hydrolase family 1, which, hi addition,contains nine ß-glycosidases of different origins.Kinetic and immunological evidence is provided in this reportwhich strengthens the relationship of the four 6-phospho-ß-glycosidases.It is shown that the 6-phospho-ß-galactosidases and6-phospho-ß-glucosidase B are able to split aromaticß-galactoside phosphates and ß-glucosidephosphates. The turnover numbers of hydrolysis of substrateswith different epimerization at C-4 of the glycon vary up to15-fold only. Two polydonal antisera, one derived against thenative 6-phospho-ß-galactosidase from S.aureus andthe other derived against the 6-phospho-ß-glucosidaseB, cross-reacted with both enzymes. Peptides of the proteinswere separated by reverse phase HPLC. The cross-reacting peptideswere sequenced and shown to be localized at almost the sameposition in the aligned primary structures of both enzymes.An insertion of nine amino adds near these antigenic domainsis unique for the 6-phospho-ß-glycosidases and missingwithin the sequences of the ß-glycoside-specific membersof the family. The lacG gene of a 6-phospho-ß-galactosidasenegative S.aureus mutant was doned into E.coli and sequenced.In the totally inactive mutant protein only the glycine at position332 was changed to an arginine. This amino acid is part of thesequence insertion near the antigenic domain reacting with bothantisera. These data support the assumption that the regionis of great importance for the function of the enzymes and thatit is possible it determines the specificity of the phosphorylatedform of the substrates. In addition, the 6-phospho-ß-galactosidaseof S.aureus was modified by sitedirected mutagenesis of thecorresponding lacG gene hi order to replace residues Glul60and Glu375, which were suspected of being involved hi the generalacid catalysis of substrate hydrolysis, with glutamine residues.The mutant protein 160EQ retained some catalytic activity whilethe protein 375EQ was totally inactive. Glu375 is the activesite nudeophile of the 6-phospho-ß-galactosidase ofS.aureus. It is located in the sequence motif ENG where Glu358was identified as the catalytkally active nudeophile hi theß-glucosidase of Agrobacterium.  相似文献   

19.
Within the BRIDGE T-project on lipases we investigate the structure-functionrelationships of the lipases from Bacillus subtilis and Pseudomonasaeruginosa. Construction of an overproducing Bacillus. strainallowed the purification of > 100 mg lipase from 30 l culturesupernatant. After testing a large variety of crystallizationconditions, the Bacillus lipase gave crystals of reasonablequality in PEG-4000 (38-45%), Na2SO4 and octyl-ß-glucosideat 22°C, pH 9.0. A 2.5 Å; dataset has been obtainedwhich is complete from 15 to 2.5 A resolution. P.aeruginosawild-type strain PAC1R was fermented using conditions of maximumlipase production. More than 90% of the lipase was cell boundand could be solubilized by treatment of the cells with TritonX-100. This permitted the purification of 50 mg lipase. So far,no crystals of sufficient quality were obtained. Comparisonof the model we built for the Pseudomonas lipase, on the basisof sequences and structures of various hydrolases which werefound to possess a common folding pattern (/ß hydrolasefold), with the X-ray structure of the P.glumae lipase revealedthat it is possible to correctly build the structure of thecore of a protein even in the absence of obvious sequence homologywith a protein of known 3-D structure.  相似文献   

20.
We have identified a P450(cam) mutation, L244A, that mitigates the affinity for imidazole and substituted imidazoles while maintaining a high affinity for the natural substrate camphor. The P450(cam) L244A crystal structure solved in the absence of any ligand reveals that the I-helix is displaced inwards by over 1 A in response to the cavity created by the change from leucine to alanine. Furthermore, the crystal structures of imidazole-bound P450(cam) and the 1-methylimidazole-bound P450(cam) L244A mutant reveal that the ligands have distinct binding modes in the two proteins. Whereas in wild-type P450(cam) the imidazole coordinates to the iron in an orientation roughly perpendicular to the plane of the heme, in the L244A mutant the rearranged I helix, and specifically residue Val247, forces the imidazole into an orientation almost parallel to the heme that impairs its ability to coordinate to the heme iron. As a result, the imidazole is much more weakly bound to the mutant than it is to the wild-type enzyme. Despite the constriction of the active site by the mutation, previous work with the L244A mutant has shown that it oxidizes larger substrates than the wild-type enzyme. This paradoxical situation, in which a mutation that nominally increases the active site cavity appears to decrease it, suggests that the mutation actually increases the active site maleability, allowing it to better expand to oxidize larger substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号