首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
The substitution of coal blending with sawdust had been widely investigated for metallurgical coke production. In this paper, the physiochemical structures of the semicoke derived from sawdust/coals blends co-coking were characterized by several analytical techniques including FTIR-ATR, XPS, NMR, OM, and SEM. Meanwhile, the influence of the sawdust on the physicochemical properties of the sawdust/coals blends were also investigated. Results indicated that partial substitution of coal blending with sawdust benefited from the formation of colloid and optical anisotropy due to the positive synergetic effect, whereas high proportion of sawdust (>10 wt%) inhibited the agglomeration of semi-coke. On the other hand, the semicoke consisted primarily of aromatic carbons replaced by the oxygen linked to carbons and aliphatic carbons when the coal blending was replaced by high proportion of sawdust, causing a less polyaromatic graphite-like structure formation in the semicoke.  相似文献   

2.
The oxy-fuel co-combustion behavior of two herbaceous biomass species (Bermuda grass and cornstalk) with bituminous coal was investigated by thermal gravimetric analysis (40°C/min). The incorporation of Bermuda grass or cornstalk could improve combustion indices of the bituminous coal. Once blending the biomass with bituminous coal, ignition temperatures of blends could be advanced by about 100–170°C. With increasing the oxygen concentration or blending ratio, the comprehensive performance index of the most blends and their parent samples increased. For the 80%grass/20%coal blend, there was a strong synergistic effect in its parent samples at 60% oxygen concentration.  相似文献   

3.
The addition of biomass to coking coals can reduce operational costs and carbon emissions but also reduces fluidity development. The use of heating rates up to 20 °C min−1 in the softening stage of coal has been investigated using high-temperature small-amplitude oscillatory-shear (SAOS) rheometry to improve the fluid characteristics of binary blends of two coking coals with Scots pine. The effects of biomass concentration and particle size, biomass torrefaction, pellet mass and thermal pre-treatment of the blend on fluidity development and semicoke strength have also been studied. Fluidity increased with an increase in heating rate and an increase in the final temperature for fast heating. Relationships were found between the minimum complex viscosity of the blend, the heating rate and the concentration of biomass, which have been used to propose an equation to calculate the heating rate necessary to achieve optimum fluidity for a particular blend with biomass. The fluid characteristics of the blend were not affected to a great extent by the particle sizes of the biomass studied (<500 μm and >500 μm) or the torrefaction of the biomass (250 °C for 1 h in N2), were increased by an increase in pellet mass, and were destroyed by blend pre-heating. The semicoke strength of the blend with a mass fraction of 10% Scots pine and fast heating (10 °C min−1) proved to be higher than that of the coal alone with slow heating (3 °C min−1) and resulted in a 3% reduction in non-renewable carbon emissions.  相似文献   

4.
This study had compared raw biomass and pre-treated biomass co-gasified with coal with the aim of investigating the reliability of pre-treated biomass for enhancing gasification performance. Sawdust (SD) and wood pellet (palletisation form of sawdust - WP) and blends of these two feedstocks with sub-bituminous coal (CL), were gasified in an air atmosphere using an external heated fixed-bed downdraft gasifier system. Response surface methodology (RSM) incorporating the central composite design (CCD) was applied to assist the comparison of all operating variables. The three independent variables were investigated within a specific range of coal blending ratios from 25% to 75%, gasification temperature from 650 °C to 850 °C and equivalence ratio from 0.20 to 0.30 against the dependent variables, namely the H2/CO ratio and higher heating value of the syngas (HHVsyngas). The results revealed the H2/CO ratio and a higher heating value of the syngas of more than 1.585 and 6.072 MJ/Nm3, respectively. Findings also showed that the H2/CO ratio in the syngas from CL/WP possessed a higher value than the CL/SD. In contrast, CL/SD possessed a higher heating value for syngas with about 1% difference compared to the CL/WP. Therefore, co-gasified coal with wood pellets could potentially be a substitute for sawdust.  相似文献   

5.
煤粉与生物质混燃的低温着火特性   总被引:1,自引:1,他引:0  
利用自制的管式炉恒温热重测量实验台研究了掺混比、温度、煤种以及生物质种类等因素对煤粉与生物质混燃时低温着火特性的影响,并对煤粉与生物质混燃时的低温着火活化能进行了计算.结果表明:随着掺混比的增大,混合物的燃烧速率加快且燃尽程度提高;温度升高能改善煤粉与生物质混合物的燃烧特性;掺混生物质对难燃煤的着火特性影响比对易燃煤更明显;对于某一煤种,掺混水分和挥发分含量高的生物质,燃烧初期的失重速率加快;掺混灰分含量越多的生物质,在燃烧后期对煤粉的促燃作用越差;燃烧反应活化能随着生物质掺混比和温度区间的增大而减小.  相似文献   

6.
In this paper, the synergistic effect of co-gasification for coal gangue and pine sawdust was studied on a self-made two-stage gasification fixed bed experimental device. The results indicated that there was synergistic effect between coal gangue and pine sawdust. With the gasification temperature was 850 °C, the catalytic reforming temperature was 900 °C, the steam flow was 2 ml/min and the mixing ratio of coal gangue and pine sawdust was 1:1. The co-gasification synergistic effect yields the best results, the H2 volume fraction reached its highest value of 37.2%, with a synergistic coefficient of 0.22. Under this condition, the number of mesopores in co-gasification char was the largest and the absorbance of the hydroxyl (-OH) functional group was the smallest. The alkali metal (K, Ca) content reached a maximum of 22.18%, which was conducive to the formation of hydrogen.  相似文献   

7.
Synergistic effects of biomass and plastic co-pyrolysis on gas, tar, soot and char production and pyrolysis kinetics were studied using a fixed-bed reactor and a thermogravimetric analyzer, respectively. These pyrolysis products' yields and compositions were measured during the individual pyrolysis of biomass and plastic at 800–1100 °C, and synergistic effects were explored under non-sooty (900 °C) and sooty (1100 °C) conditions. Results shows that the soot starts to form from tar at 900–1000 °C for both biomass and plastic and that the soot from plastic pyrolysis is of greater yield and size than the biomass pyrolysis. Under non-sooty conditions, the synergistic effect of co-pyrolysis results in higher char yields but lower tar yields, while under sooty conditions co-pyrolysis inhibits the gas and soot formation, resulting in higher tar yields and different soot morphologies. The synergistic effect observed by the thermogravimetric analysis agrees with that in a fixed-bed reactor.  相似文献   

8.
In this work, the effects of torrefaction on the physiochemical properties of empty fruit bunches (EFB), palm mesocarp fiber (PMF) and palm kernel shell (PKS) are investigated. The change of properties of these biomass residues such as CHNS mass fraction, gross calorific value (GCV), mass and energy yields and surface structure when subjected to torrefaction process are studied. In this work, these materials with particle size in the range of 355–500 μm are torrefied under light torrefaction conditions (200, 220 and 240 °C) and severe torrefaction conditions (260, 280 and 300 °C). TGA is used to monitor the mass loss during torrefaction while tube furnace is used to produce significant amount of products for chemical analyses. In general, the study reveals torrefaction process of palm oil biomass can be divided into two main stages through the observation on the mass loss distribution. The first stage is the dehydration process at the temperature below than 105 °C where the mass loss is in the range of 3–5%. In the second stage, the decomposition reaction takes place at temperature of 200–300 °C. Furthermore, the study reveals that carbon mass fraction and gross calorific value (GCV) increase with the increase of torrefaction temperature but the O/C ratio, hydrogen and oxygen mass fractions decrease for all biomass. Among the biomass, torrefied PKS has the highest carbon mass fraction of 55.6% when torrefied at 300 °C while PMF has the highest GCV of 23.73 MJ kg−1 when torrefied at the same temperature. Both EFB and PMF produce lower mass fraction than PKS when subjected to same torrefaction temperature. In terms of energy yield, PKS produces 86–92% yield when torrefied at light to severe torrefaction conditions, until 280 °C. However, both EFB and PMF only produce 70–78% yield at light torrefaction conditions, until 240 °C. Overall, the mass loss of 45–55% of these biomasses is observed when subjected to torrefaction process. Moreover, SEM images reveal that torrefaction has more severe impact on surface structure of EFB and PMF than that of PKS especially under severe torrefaction conditions. The study concludes that the torrefaction process of these biomass has to be optimized based on the type of the biomass in order to offset the mass loss of these materials through the process and increase the energy value of the solid product.  相似文献   

9.
In this study, the H2O co-gasification of petroleum coke (PC) with low (sulfur and V2O5 contents) and different five kinds of biomass wastes were conducted using a thermogravimetric analyzer (TGA). The biomass used were the agricultural wastes (rice husk (RH), rice stalk (RS), and cotton straw (CS)) and by-product wastes (sawdust (SD) and sugar cane bagasse (SCB)). Their reactivities, kinetics and thermodynamics parameters were investigated and compared in detail as well as a synergistic effect during co-gasification of the blends. The kinetics and thermodynamics parameters were estimated by using the homogeneous model (HM) or the first-order chemical reaction (O1) and shrinking core models (SCM) or Phase boundary controlled reactions (R2 and R3). It was found that the biomass wastes was significantly improved the blends gasification reactivity. The obvious significant synergistic effect was observed in the char gasification stage of the blends compared with the pyrolysis stage. Compared to other models the phase boundary controlled reaction (R2) was found to be the best model to predict the experimental data of the co-gasification process. For both reaction stages of single fuels, SD showed the lowest values of activation energy and thermodynamics parameters. The blends of PC: SD and PC: CS provided the lowest activation energy and thermodynamics parameters for the pyrolysis stage and the char gasification stage, respectively. The co-gasification of PC and biomass wastes are a promising technique for the efficient utilization of PC and biomass wastes.  相似文献   

10.
In this study, different char based catalysts were evaluated in order to increase hydrogen production from the steam pyrolysis of olive pomace in two stage fixed bed reactor system. Biomass char, nickel loaded biomass char, coal char and nickel or iron loaded coal chars were used as catalyst. Acid washed biomass char was also tested to investigate the effect of inorganics in char on catalytic activity for hydrogen production. Catalysts were characterized by using Brunauer–Emmet–Teller (BET) method, X-ray diffraction (XRD) analyzer, X-ray fluorescence (XRF) and thermogravimetric analyzer (TGA). The results showed that the steam in absence of catalyst had no influence on hydrogen production. Increase in catalytic bed temperature (from 500 °C to 700 °C) enhanced hydrogen production in presence of Ni-impregnated and non-impregnated biomass char. Inherent inorganic content of char had great effect on hydrogen production. Ni based biomass char exhibited the highest catalytic activity in terms of hydrogen production. Besides, Ni and Fe based coal char had catalytic activity on H2 production. On the other hand, the results showed that biomass char was not thermally stable under steam pyrolysis conditions. Weight loss of catalyst during steam pyrolysis could be attributed to steam gasification of biomass char itself. In contrast, properties of coal char based catalysts after steam pyrolysis process remained nearly unchanged, leading to better thermal stability than biomass char.  相似文献   

11.
The co-thermolysis and co-liquefaction properties of Shenhua coal and sawdust were investigated in this study. The synergistic effect between Shenhua coal and sawdust in co-liquefaction was probed. TG/DTG analysis suggests that the sawdust, which has lower pyrolysis temperature, can promote the thermolysis of Shenhua coal, resulting in more volatile matter to be released from coal molecular structure during the co-thermolysis process. This will result in the larger weight losses of their mixture compared to the corresponding weighted mean values of individual pyrolysis. The individual liquefaction of Shenhua coal and sawdust shows that sawdust has higher liquefaction activity compared to Shenhua coal. It gives much higher liquefaction conversion and oil yield than Shenhua coal at the same liquefaction conditions. Co-liquefactions of Shenhua coal and sawdust at different conditions were carried out. The results suggest that there exists an obviously synergistic effect during the co-liquefaction, and this synergistic effect is the function of liquefaction conditions. At high liquefaction temperatures and long reaction times, the synergistic effect decreases because of the increase of liquefaction activity of coal and lack of hydrogen donating ability of the system at the conditions, resulting in the increase of the rate of retrogressive condensed reactions. The largest enhancements in conversion of 16.8% and oil yield of 11.4% comparing with corresponding calculated weighted mean values of the individual liquefaction of Shenhua coal and sawdust were obtained at 400 and 380 °C, respectively in the co-liquefaction with 1/1 blending ratio of coal/sawdust.  相似文献   

12.
《能源学会志》2020,93(4):1364-1372
The effect of biomass ash (rice straw ash (RSA) and cotton straw ash (CSA)) on the gasification reactivity and the evolution of physicochemical structure of petcoke char was investigated. The catalytic effect of CSA was significantly higher than that of RSA, and the catalytic effect of biomass ash was enhanced at lower gasification temperature and for higher blending ratio of biomass ash. The promoting effect of biomass ash was related to the increase of active AAEM content, the decrease of order degree of carbon structure and the development of surface structure in char gasification after biomass ash addition, which was more significant for CSA, at lower temperature and for higher blending ratio. Moreover, the shrinking core model was suitable for char gasification, and the additions of RSA and CSA reduced the activation energy of petcoke char gasification from 199.84 kJ mol−1 to 159.85 kJ mol−1 and 62.75 kJ mol−1, respectively.  相似文献   

13.
The biomass, coal and their blends at blending ratios (biomass : coal) of 95:5, 90:10, 85:15 and 80:20 were pyrolysed under a nitrogen environment at four different heating rates comprising 5°C, 10°C, 15°C and 20°C per minute to investigate their pyrolytic behaviour and to determine kinetic parameters of thermal decomposition through Kissinger's corrected kinetic equation using the thermogravimetric analysis results. In the kinetic analysis, the activation energy of both types of biomass was less than that of coal, being 168.7 kJ/mol (cypress wood chips), 164.6 kJ/mol (macadamia nut shells) and 199.6 kJ/mol (Australian bituminous coal). The activation energy of the blends of biomass and coal followed that of the weighted average of the individual samples in the blends. Char production of the samples and the blends was also analysed to observe any synergetic effects and thermal interaction between biomass and coal. The char production of the blends corresponded to the sum of the results for the individual samples with the coefficient of determination of 0.999. Thermal decomposition of biomass and coal appeared to take place independently, and thus, the activation energy of the blends can be calculated from that of the two components. There was no evidence for any significant synergetic effects and thermal interaction between either type of biomass and coal during copyrolysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
《能源学会志》2020,93(2):508-517
The co-combustion characteristics of coal and microalgae with different blending ratios and under different atmospheres are studied by single particle combustion and thermogravimetric analysis methods. The combustion processes of coal, microalgae and their blends in the single particle combustion experiment have two stages, while the combustion process of coal in the thermogravimetric analysis experiment only has one stage. With the increasing blending ratio of microalgae, flames of volatiles and char of fuels become dimmer and smaller, and the average flame temperature decreases from about 1400 °C to about 1200 °C. The ignition delay time decreases from 200 ms to 140 ms, and the experimental ignition delay time of blended fuels is lower than the theoretical ignition delay time, which demonstrates that the synthetic effect between coal and microalgae exists. To analyze the influence of oxy-fuel atmosphere on the combustion characteristics, the air is replaced by the O2/CO2 atmosphere. The replacement decreases the luminosity, size and average temperature of flames. The average flame temperature of volatiles decreases from 1449.4 °C to 1151.2 °C, and that of char decreases from 1240.0 °C to 1213.4 °C. The replacement increases the ignition delay time of fuel from 80 ms to 100 ms. Increasing mole fraction of O2 in O2/CO2 atmosphere can offset these influences. With the increasing mole fraction of O2, flames of volatiles and char of fuels become brighter and larger, the average flame temperature increases from about 1100 °C to about 1300 °C, while the ignition delay time decreases from 100 ms to 77 ms.  相似文献   

15.
《能源学会志》2020,93(3):1074-1082
A dual loop gasification system (DLG) has been previously proposed to facilitate tar destruction and H2-rich gas production in steam gasification of biomass. To sustain the process auto-thermal, however, additional fuel with higher carbon content has to be supplied. Co-gasification of biomass in conjunction with coal is a preferred option. Herein, the heat balance of the steam co-gasification of pine sawdust and Shenmu bituminous coal in the DLG has been analyzed to verify the feasibility of the process with the help of Aspen Plus. Upon which, the co-gasification experiments in the DLG have been investigated with olivine as both solid heat carriers and in-situ tar destruction catalysts. The simulation results show that the self-heating of the DLG in the co-gasification is achieved at the coal blending ratio of 28%, gasification circulation ratio of 19 and reforming circulation ratio of 20 when the gasifier temperature 800 °C, reforming temperature 850 °C, combustor temperature 920 °C and S/C 1.1. The co-gasification experiments indicate that the tar is efficiently destructed in the DLG at the optimized reformer temperature and with olivine catalysts.  相似文献   

16.
This work reports utilised of RGO from Sengon wood biomass to support Fe–N–C noble-free catalyst (Fe–N-RGO), while also attempt to investigate the effect of pyrolysis stage on Fe–N-RGO catalysts with four different nitrogen precursors towards the ORR activity in acidic medium. One- and two-step pyrolysis were performed at 900 °C for 1 h and 2 h respectively to produce Fe–N-RGO. This work revealed that two-step pyrolysis was able to remove the volatile components and hence forming more graphitised, stable graphitic-N and Fe-Nx, synergistically improve the ORR activity with highest onset potential of 0.83 V vs RHE and limiting current density of 5.33 mA cm−2 reported on Fe-Pani-RGO 2py. An increase in the kinetic on Fe-Pani-RGO 2py with Tafel slope of 74 mV/dec operated at 80 °C was reported. The mesoporous structure on RGO increases the stability by 8% and better methanol tolerance when compared to a benchmark Pt/C catalyst.  相似文献   

17.
《能源学会志》2020,93(4):1602-1614
Microwave-assisted catalytic pyrolysis is considered to be a promising technology for coal-staged conversion due to its high efficiency and selectivity. This work was undertaken to investigate the pyrolysis behavior and products quality of microwave-assisted pyrolysis of low rank coal catalyzed by metallic catalysts (K, Ca and Fe) with both dielectric response and catalytic effect via a microwave tube furnace. The mechanism of metallic catalysts on catalytic cracking tar under microwave radiation was also investigated. The dielectric properties and physicochemical structure of coal chars were characterized by a vector network analyzer, XRD, FT-IR, SEM, EDS, and Raman. The chemical structure characteristics of generated tars were determined by FT-IR and GC-MS. Results manifested that microwave interacted preferentially with metal catalysts by polarization and conductivity loss could efficiently induce the occurrence of catalytic pyrolysis reactions to generate high yield syngas (CO + H2). Specifically, the dielectric loss factor of resultant chars was considerably improved with the introduction of metallic catalysts especial for Ca and Fe. Furthermore, it is found that metal catalysts dramatically enriched the amorphous carbon structure in produced chars whereas in favour of suppressing the trend of carbon graphitization. Additionally, the transformation of larger polycyclic aromatic compounds into lighter tar species was catalytically accelerated, resulting in the large proportion of single-ring aromatics in tar under the synergistic effect between microwave and metal catalysts.  相似文献   

18.
Several transition metals (Mn, Ce, V and Fe) were loaded on nitric acid modified biomass char (BC) using an impregnation method for the selective catalytic reduction (SCR) of NO with NH3 at low-temperature. The series of prepared catalysts were characterized by BET, SEM, FT-IR and XRD. Results showed the sequence of NO conversion within the temperature of 125–225 °C was Mn/BC > Ce/BC > V/BC > Fe/BC > BC, and Mn/BC exhibited the highest NO conversion of 87.6% at 200 °C. BC supports provided high surface area, which could contribute to the better dispersion of transition oxides on biomass char, revealing rich oxygen containing groups. Besides, the BC worked not only as a promising support, but also provided high activity adsorption sites for NH3 and conducted as oxidizing agent for NO due to the existence of graphite crystallite structure. Owing to the existence of “fast SCR” reaction process, the transition metal oxides supported on BC catalysts exhibited superior denitration efficiency in low temperature.  相似文献   

19.
《能源学会志》2020,93(4):1503-1510
In this study, the evolution characteristics of sulfur-containing gases during thermal conversion of two coals under different atmospheres were studied through temperature-program decomposition (TPD) and rapid-heating decomposition (RHD) coupled with online mass spectrum (MS). The releasing profiles of H2, CH4 and CO were also measured. Results showed that the effect of atmosphere and heating rate on evolution of sulfur-containing gases was very significant. It was found that Ar atmosphere was more favorable to the formation of sulfur-containing gases than CO2 atmosphere by using TPD-MS. In CO2, the formation of H2S and SO2 was restrained in 260–650 °C, but was promoted in 880–980 °C; the formation of COS was promoted during the whole process. In Ar, high releasing intensity of H2 and CH4 could stabilize sulfur-containing radicals which led to high amount of H2S and SO2; while high releasing intensity of CO in CO2 resulted in high amount of COS. By using RHD-MS, it was found that the steam atmosphere was highly favorable for the transformation of H2S, SO2 and COS during the entire reaction period. However, the CO2 atmosphere was disadvantageous to the transformation of H2S, SO2 and COS at the initial stage, but slight favorable for the transformation of H2S, SO2 and COS during the later stage. These was resulted from the gasification reaction of steam/CO2 with coal. The key factor was the releasing amount of H2 and CO, which promoted the formation and transformation of H2S, SO2 and COS.  相似文献   

20.
In this study, torrefaction of sunflower seed cake and hydrogen production from torrefied sunflower seed cake via steam gasification were investigated. Torrefaction experiments were performed at 250, 300 and 350 °C for different times (10–30 min). Torrefaction at 300 °C for 30 min was selected to be optimum condition, considering the mass yield and energy densification ratio. Steam gasification of lignite, raw- and torrefied biomass, and their blends at different ratios were conducted at downdraft fixed bed reactor. For comparison, gasification experiments with pyrochar obtained at 500 °C were also performed. The maximum hydrogen yield of 100 mol/kg fuel was obtained steam gasification of pyrochar. The hydrogen yields of 84 and 75 mol/kg fuel were obtained from lignite and torrefied biomass, respectively. Remarkable synergic effect exhibited in co-gasification of lignite with raw biomass or torrefied biomass at a blending ratio of 1:1. In co-gasification, the highest hydrogen yield of 110 mol/kg fuel was obtained from torrefied biomass-lignite (1:1) blend, while a hydrogen yield from pyrochar-lignite (1:1) blend was 98 mol/kg. The overall results showed that in co-gasification of lignite with biomass, the yields of hydrogen depend on the volatiles content of raw biomass/torrefied biomass, besides alkaline earth metals (AAEMs) content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号