首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
氢气作为未来能源的载体前景十分广阔,随着氢气的广泛应用,高压氢气的泄漏事故的产生将不可避免。本文基于FLUENT软件的物质传输与反应模块建立了输氢管道、储氢罐泄漏扩散的模型,提出了研究氢气泄漏扩散的数值模拟方法。通过模拟求解得出了氢气含量在模拟区域的分布等结果。对结果进行分析,得到了氢气泄漏后的扩散特性。研究结论可以为处理高压氢气泄漏提供一定参考。  相似文献   

2.
通过ALOHA软件进行了不同风速、环境温度、泄漏量扩散模拟,分析了不同风速、温度、泄漏量条件下的扩散规律。结果表明,泄漏扩散距离随着风速的增大而变小,风速越大,泄漏扩散范围越小;泄漏扩散距离随着环境温度的升高而变大,温度越高,泄漏扩散范围越大;泄漏扩散距离随着泄漏量的增加而变大,泄漏量越大,泄漏扩散范围越大。将液氢蒸发和氢气扩散试验的体积分数数据与ALOHA软件模拟数据进行对比,结果表明:ALOHA软件对氢的体积分数值模拟结果具有良好的精度,在液氢泄漏事故应急中具实用性。  相似文献   

3.
为了明确加氢站发生高压氢气泄漏后形成可燃区域的分布特性,进行了某加氢站中的35 MPa和70 MPa加氢机发生泄漏事故的数值模拟。研究了泄漏孔径和氢气预冷温度对稳态可燃区域分布形态和体积的影响。计算结果表明,70 MPa加氢机泄漏形成的可燃区域体积约为35 MPa加氢机的两倍。泄漏孔尺寸对可燃区域体积有非常显著的影响。随着预冷温度的降低,射流边界层的气流速度降低,氢气质量分数增大,且后者对稳态可燃区域体积的影响更大,尤其在发生中孔泄漏时,随着氢气预冷温度从300 K降低至240 K,35 MPa加氢机泄漏形成的可燃区域体积从5 590 m3增加到16 835 m3,增长率为201.16%,同时可燃区域的形态从“平面”转换到“羽状”。  相似文献   

4.
本文选取氨制冷机房作为典型场景,应用计算流体力学方法研究氨气泄漏扩散规律,采用Fluent软件对无通风及上下通风情况下的制冷机房氨气泄漏扩散进行了数值模拟。分析了氨气泄漏后不同时刻制冷机房纵剖面和横截面氨气浓度分布,研究了不同泄漏量下氨气浓度随高度变化的特征,提出了氨气报警器偏上安装的建议。对比上进风下排风和下进风上排风两种应急排风方案泄漏扩散的数值模拟结果,提出了应急排风进风口偏下设置的建议。  相似文献   

5.
6.
针对载人航天器舱内气体在太空中的泄漏问题,提出内外舱同时升压法来进行数值模拟计算,引入无量纲参数气体泄漏因子来判定气体泄漏量。采用基于Simple算法的有限体积法,对载人航天器舱内气体泄漏状态进行仿真,并分析了气体泄漏过程中影响参数。结果表明:增加镀铝薄膜层厚度和减小镀铝薄膜层材料孔隙率都能同时减弱气体泄漏因子,使气体泄漏量降至最小。  相似文献   

7.
基于计算流体力学方法,建立了大规模液氢泄漏扩散的数值模型,采用美国国家航空航天局(NASA)1981年的液氢泄漏实验数据验证模型可靠性。为了研究空间约束对液氢泄漏扩散过程的影响,在泄漏口上风向和下风向分别设置障碍物,模拟研究液氢泄漏蒸发形成的氢气云团的扩散过程,分析得到了云团的运动规律与云团浓度下降至低于可燃浓度的时间、云团扩散的最高和最远的距离等重要参数。对比无障碍情况下液氢泄漏扩散过程,发现在泄漏口附近设置障碍物能够使可燃氢气云团扩散达到的最大高度降低44.0%,同时云团在水平方向所达到的最远距离显著减少65.7%。并且发现在泄漏口上风向设置障碍物能够加快氢气云团的扩散速度,相比无障碍物工况氢气云团浓度降至低于可燃范围的时间缩短了15%,能够减轻发生火灾的风险;而在泄漏口下风向设置障碍物则使云团浓度降至低于可燃范围的时间相比无障碍工况延长64%,增加了发生二次事故的可能。  相似文献   

8.
研究了室外无风环境下高压储氢容器泄漏稳定扩散问题。首先应用组分传输模型以及计算流体力学软件FULENT的Realizable湍动能-耗散率(k-ε)模型对泄漏扩散过程进行模拟和数值仿真,得出了泄漏口附近稳定扩散对称面氢气浓度分布图。在此基础上,对仿真获得的扩散浓度数据,采用依次针对射流方向和射流垂直方向进行回归分析的方法,建立了10MPa压力储氢容器漏孔直径为1mm时泄漏稳定扩散场的参数模型。结果表明,数值模拟计算与理论预测的流场基本吻合,而稳定扩散场的参数模型反映了数值仿真结果,并具有一定的推广能力。  相似文献   

9.
根据大气扩散方程建立公路隧道峒口污染物扩散的物理数学模型,并对某城市隧道峒口在冬、夏两季主导风向情况下CO扩散情况、浓度分布进行了数值模拟。数值计算结果表明,在距地面1.5m的标高上CO集中隧道引道坡附近,对人行道附近人员影响较小;在横向风向下,局部地区CO浓度超标。  相似文献   

10.
密封性能在保证空间站正常运行中极其重要。本文针对空间站运行过程中可能发生的舱外氨气泄漏,建立了太空真空环境中气体分子运动的物理模型,运用直接蒙特卡洛模拟方法对泄漏到太空中的气体羽流场进行数值模拟,得到羽流场的气体密度分布规律,并通过求解无碰撞的玻尔兹曼方程得到羽流场粒子密度分布的解析解,最后验证了解析解的正确性,以期为未来空间站的在轨检漏提供理论支持。  相似文献   

11.
借助CFD软件对车间内纳米颗粒物的扩散问题进行了数值研究,采用RNGκ-ε两方程模型计算车间内湍流,计算得到不同风速风向条件下人体呼吸高度上风场和颗粒物的浓度分布。结果表明,在不采取通风措施的条件下,车间内纳米颗粒物容易堆积,30min内最大浓度可达1430.71μg/m3,通风使车间内空气条件得到明显改善,在排放源的下风向仍有纳米颗粒物堆积的现象,随着风速的加大,纳米颗粒物堆积的范围和浓度都明显减少。  相似文献   

12.
静电分散中粉体荷电规律的数值模拟   总被引:1,自引:0,他引:1  
基于建立适合Fluent软件求解的颗粒荷电数学模型,利用离散相模型对荷电器中碳酸钙粉体颗粒的荷电规律进行模拟,分析颗粒粒径、荷电电压2个因素对颗粒荷质比的影响,并对模拟结果进行实验验证。结果表明,实验结果与仿真结果较为接近。  相似文献   

13.
对Mo-8wt%Cu复合粉末进行高能球磨,利用SEM、显微硬度仪对高能球磨后的层片状复合粉末进行了层片厚度和显微硬度的测定,并推导出层片厚度与球磨时间的理论模型,结果表明,随着球磨时间的延长,Mo-Cu复合粉末层片结构不断细化,片层厚度变小。硬度没有达到饱和值之前,粉末的硬度和球磨时间存在着线性关系,实测值小于计算值,而硬度值达到饱和值之后,实测值大于计算值。  相似文献   

14.
目的研究气门座圈的粉末锻造工艺,提高产品的致密度。方法通过建立气门座圈粉末锻造数值模型,分析锻造过程中相对密度的变化过程,研究预制毛坯初始相对密度、锻造加热温度和成形速度对致密化的影响。在此基础上进行粉末锻造实验,并与模拟结果比较。结果随着预制毛坯初始致密度、加热温度的增加以及成形速度的降低,粉末锻造致密度化所需的成形力降低;预制坯初始密度对锻件密度均匀性影响最为显著。经过粉末锻造后的气门座圈,密度从6.6 g/cm~3提高到7.46 g/cm~3,致密度达到96.4%。结论相比传统压制-烧结工艺,粉末锻造可以大幅度提高气门座圈的致密度。  相似文献   

15.
为了给螺旋送粉器内流道优化提供理论依据,根据气-固两相流输送的相关理论,运用Eulerian-Lagrange数学方式,采用FLUENT软件,通过离散相模型对螺旋送粉器内固体颗粒的轨迹进行数值模拟,主要研究螺旋送粉器的转速对其输送性能的影响,及不同直径粉体颗粒轨迹。结果表明:气体速度和粉体颗粒大小是影响螺旋送粉器送粉性能的关键因素。  相似文献   

16.
在核聚变领域、加速器领域、航天等领域中,根据装置或设备运行要求,很多大型真空容器里需布置着许多冷却管道。在运行过程中,若有冷却管道发生泄漏,将直接影响整个系统的稳定性和安全性,则需对管道进行泄漏检测并快速定位漏点位置对其修复。基于此要求,本文在不破真空的条件下提出超声检测方法对管道泄漏点进行检测定位分析研究。借助有限元分析模拟方法,在真空环境下,以不锈钢材质管道为研究对象,对管道泄漏检测的进行数值仿真,以管道一端通过加载中心频率100 kHz瞬态位移载荷,选定一截面进行信号接收方式,进行仿真模拟,获得截面的位移时程变化。结果表明:对1.5 m长管道可有效检测出2 mm当量孔径漏点;通过信号处理方法对检测信号分析,显示管道定位精度在2 cm以内。分析研究结果和方法为后续更长管道泄漏检测定位研究提供借鉴,也为未来管道泄漏检测定位应用研究奠定理论和技术基础。  相似文献   

17.
室内气流组织数值模拟及仿真软件   总被引:1,自引:0,他引:1  
不同的气流组织形式对室内空气品质会产生影响,用CFD技术模拟气流组织具体影响,将室内空气品质的研究体现在工程设计上是必要的。本文就数值方法和相关的气流组织模拟软件作了分析和介绍,并说明了在应用过程中的步骤。  相似文献   

18.
We conduct simulation study on the typical influencing factors for negative pressure wave in liquid pipeline leakage.We first analyse the liquid pipeline leakage detection based on negative pressure wave method and obtain the essential simulation parameters.Then based on the physical model of pipeline and by introducing leakage boundary condition,we simulate the variation of pressure and flow rate in pipeline after leakage,the influence of leakage scale and leakage position on the pressure and flow rate in ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号