首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitride-based flip-chip (FC) light-emitting diodes (LEDs) emitting at 465 nm with Ni transparent ohmic contact layers and Ag reflective mirrors were fabricated. With an incident light wavelength of 465 nm, it was found that transmittance of normalized 300/spl deg/C rapid thermal annealed (RTA) Ni(2.5 nm) was 93% while normalized reflectance of 300/spl deg/C RTA Ni(2.5 nm)/Ag(200 nm) was 92%. It was also found that 300/spl deg/C RTA Ni(2.5 nm) formed good ohmic contact on n/sup +/ short-period-superlattice structure with specific contact resistance of 7.8/spl times/10/sup -4/ /spl Omega//spl middot/cm/sup 2/. With 20-mA current injection, it was found that forward voltage and output power were 3.15 V and 16.2 mW for FC LED with 300/spl deg/C RTA Ni(2.5 nm)/Ag(200 nm). Furthermore, it was found that reliabilities of FC LEDs were good.  相似文献   

2.
We have investigated Ag-indium tin oxide (ITO) scheme for obtaining high-quality p-type ohmic contacts for GaN-based light-emitting diodes (LEDs). The Ag(1 nm)-ITO(200 nm) contacts exhibit greatly improved electrical characteristics when annealed at temperatures in the range 400/spl deg/C-600/spl deg/C for 1 min in air, yielding specific contact resistances of /spl sim/10/sup -4/ /spl Omega//spl middot/cm/sup 2/. In addition, the contacts give transmittance of about 96% at 460 nm, which is far better than that of the conventionally used oxidized Ni-Au contacts. It is shown that the luminous intensity of blue LEDs fabricated with the Ag-ITO contacts is about three times higher than that of LEDs with oxidized Ni-Au contacts. This result strongly indicates that the Ag-ITO scheme can serve as a highly promising p-type ohmic contact for the realization of high brightness near ultraviolet LEDs.  相似文献   

3.
High-quality InGaN-GaN multiquantum well (MQW) light-emitting diode (LED) structures were prepared by temperature ramping method during metalorganic chemical vapor deposition (MOCVD) growth. It was found that we could reduce the 20-mA forward voltage and increase the output intensity of the nitride-based green LEDs by increasing the growth temperature of GaN barrier layers from 700/spl deg/C to 950/spl deg/C. The 20-mA output power and maximum output power of the nitride-based green LEDs with high temperature GaN barrier layers was found to be 2.2 and 8.9 mW, respectively, which were more than 65% larger than those observed from conventional InGaN-GaN green LEDs. Such an observation could be attributed to the improved crystal quality of GaN barrier layers. The reliability of these LEDs was also found to be reasonably good.  相似文献   

4.
We report a new novel technique to suppress the temperature-dependent gain (TDG) of erbium-doped fiber amplifier in the C-band by providing a composite optical gain block, conventional erbium-doped fiber (EDF) serially concatenated with Sb-doped silica EDF. Compared with conventional EDFs, Sb-doped silica EDF showed an opposite TDG coefficient in the C-band. Detailed experimental athermalization schemes are reported for various concatenating configurations. The temperature-dependent optical gain variation was suppressed within /spl plusmn/0.35 dB for the temperature range of -40/spl deg/C to +80/spl deg/C from 1530 to 1560 nm.  相似文献   

5.
The potential of 1.3-/spl mu/m AlGaInAs multiple quantum-well (MQW) laser diodes for uncooled operation in high-speed optical communication systems is experimentally evaluated by characterizing the temperature dependence of key parameters such as the threshold current, transparency current density, optical gain and carrier lifetime. Detailed measurements performed in the 20/spl deg/C-100/spl deg/C temperature range indicate a localized T/sub 0/ value of 68 K at 98/spl deg/C for a device with a 2.8 /spl mu/m ridge width and 700-/spl mu/m cavity length. The transparency current density is measured for temperatures from 20/spl deg/C to 60/spl deg/C and found to increase at a rate of 7.7 A/spl middot/cm/sup -2//spl middot/ /spl deg/C/sup -1/. Optical gain characterizations show that the peak modal gain at threshold is independent of temperature, whereas the differential gain decreases linearly with temperature at a rate of 3/spl times/10/sup -4/ A/sup -1//spl middot//spl deg/C/sup -1/. The differential carrier lifetime is determined from electrical impedance measurements and found to decrease with temperature. From the measured carrier lifetime we derive the monomolecular ( A), radiative (B), and nonradiative Auger (C) recombination coefficients and determine their temperature dependence in the 20/spl deg/C-80/spl deg/C range. Our study shows that A is temperature independent, B decreases with temperature, and C exhibits a less pronounced increase with temperature. The experimental observations are discussed and compared with theoretical predictions and measurements performed on other material systems.  相似文献   

6.
Stripe-width and cavity length dependencies of high-temperature performances of 1.3-/spl mu/m InGaAsP-InP well-designed buried-heterostructure strained multiquantum-well (MQW) lasers were investigated. The threshold currents as low as 4.5/10.5 mA and slope efficiencies as high as 0.48/0.42 mW/mA at 25/spl deg/C/85/spl deg/C were obtained in the MQW lasers with 1.5-/spl mu/m width, 250-/spl mu/m length, and 0.3/0.85 facet reflectivity. With temperature increasing from 25/spl deg/C to 85/spl deg/C, the MQW lasers exhibited lower output power degradation, the minimum value was 1.78 dB at an operation current of 45 mA. The MQW lasers were suitable for application in optical access networks.  相似文献   

7.
We demonstrate a simple, compact, high-contrast ratio, and low-loss polarization-insensitive InGaAsP-InP 2 /spl times/ 2 optical switch with an operational wavelength range from 1520 to 1580 nm. The switch is 1.3 mm long by 160 /spl mu/m wide. The on-off contrast ratio is within (21/spl plusmn/2) dB over the temperature range from 16/spl deg/C to 64/spl deg/C, the polarization sensitivity is <2 dB, and the propagation loss is (3/spl plusmn/2) dB in both the ON and OFF states, making it potentially useful for optical cross-connects, delay lines, and add-drop multiplexers.  相似文献   

8.
An all-epitaxial GaInAsN vertical-cavity surface-emitting laser for room-temperature (RT) emission at 1.3 /spl mu/m was developed by solid-source molecular beam epitaxy using a plasma source for nitrogen activation. RT photopumped operation is demonstrated at a wavelength of 1283 nm. Stimulated emission was observed up to a record high temperature of 143/spl deg/C, resulting in an emission wavelength of 1294 nm.  相似文献   

9.
The use of a thick quantum well enables coherence-collapse operation of a Bragg grating stabilised laser diode over 110/spl deg/C temperature range, yielding 975 nm wavelength emission with >40 dB sidemode suppression ratio, <1% power variation, and fibre-output power as high as 293 mW at 15/spl deg/C and 168 mW at 125/spl deg/C.  相似文献   

10.
SiC thin-film Fabry-Perot interferometer for fiber-optic temperature sensor   总被引:2,自引:0,他引:2  
Polycrystalline SiC grown on single-crystal sapphire substrates have been investigated as thin-film Fabry-Perot interferometers for fiber-optic temperature measurements in harsh temperatures. SiC-based temperature sensors are compact in size, robust, and stable at high temperatures, making them one of the best choices for high temperature applications. SiC films with thickness of about 0.5-2.0 /spl mu/m were grown at 1100/spl deg/C by chemical vapor deposition (CVD) with trimethylsilane. The effect of operating temperature on the shifts in resonance minima, /spl Delta//spl lambda//sub m/, of the SiC/sapphire substrate has been measured in the visible-infrared wavelength range. A temperature sensitivity of 1.9/spl times/10/sup -5///spl deg/C is calculated using the minimum at /spl sim/700 nm. Using a white, broadband light source, a temperature accuracy of /spl plusmn/3.5/spl deg/C is obtained over the temperature range of 22/spl deg/C to 540/spl deg/C.  相似文献   

11.
Zinc oxide (ZnO) thin-film ridge waveguides have been designed and fabricated on n-type (100) silicon substrate. A filtered cathodic vacuum arc technique is used to deposit high-crystal-quality ZnO thin films on lattice-mismatched silicon substrates at 230/spl deg/C. A ridge waveguide of width /spl sim/2 /spl mu/m and height /spl sim/0.1 /spl mu/m is defined on the ZnO thin film by plasma etching. Room-temperature amplified spontaneous emission is observed with peak wavelength at /spl sim/385 nm under 355-nm optical excitation. It is found that the net optical gain of the ZnO thin-film ridge waveguides can be as large as 120 cm/sup -1/ at a pump intensity of /spl sim/1.9 MW/cm/sup 2/.  相似文献   

12.
The thermal stability of one-transistor ferroelectric nonvolatile memory devices with a gate stack of Pt-Pb/sub 5/Ge/sub 3/O/sub 11/-Ir-Poly-SiO/sub 2/-Si was characterized in the temperature range of -10/spl deg/C to 150/spl deg/C. The memory windows decrease when the temperatures are higher than 60/spl deg/C. The drain currents (I/sub D/) after programming to on state decrease with increasing temperature. The drain currents (I/sub D/) after programming to off state increase with increasing temperature. The ratio of drain current (I/sub D/) at on state to that at off state drops from 7.5 orders of magnitude to 3.5 orders of magnitude when the temperature increases from room temperature to 150/spl deg/C. On the other hand, the memory window and the ratio of I/sub D/(on)/I/sub D/(off) of the one-transistor memory device displays practically no change when the temperature is reduced from room temperature to -10/spl deg/C. One-transistor (1T) memory devices also show excellent thermal imprint properties. Retention properties of 1T memory devices degrade with increasing temperature over 60/spl deg/C.  相似文献   

13.
Noh  S.S. Lim  C.S. Chung  G.S. Kim  K.H. 《Electronics letters》2003,39(16):1179-1180
Platinum thin films have been prepared on Al/sub 2/O/sub 3/ substrates by DC magnetron sputtering. Platinum resistance thermometers have been fabricated and their characteristics analysed. We used a UV laser (wavelength 355 nm) to adjust the Pt thin films temperature sensors to 100 /spl Omega/ at 0/spl deg/C. As result of setting the Pt resistors to the target value of 109.73 /spl Omega/ at 25/spl deg/C, 82.3% of total resistors had a tolerance within /spl plusmn/0.03 /spl Omega/ and 17.7% were within /spl plusmn/0.06 /spl Omega/ of A-class tolerance according to DIN EN 60751. The PRTs which were fabricated in this research had excellent characteristics such as high accuracy, long-term stability, wide temperature range, good linearity, good repeatability and rapid response time.  相似文献   

14.
1.3 /spl mu/m oxide confined GaInNAs VCSELs designed using the same design philosophy used for standard 850 nm VCSELs is presented. The VCSELs have doped mirrors, with graded and highly doped interfaces, and are fabricated using production-friendly procedures. Multimode VCSELs (11 /spl mu/m oxide aperture) with an emission wavelength of 1287 nm have a threshold current of 3 mA and produce 1 mW of output power at 20/spl deg/C. The maximum operating temperature is 95/spl deg/C. Emission at 1303 nm with 1 mW of output power and a threshold current of 7 mA has been observed from VCSELs with a larger detuning between the gain peak and the cavity resonance.  相似文献   

15.
This paper describes the fabrication and characterization of optical/electrical printed circuit boards (O/E-PCB) with embedded multimodal step index (MM-SI) waveguides and integrated out-of-plane micromirrors (IMMs) for three-dimensional (3-D) optical interconnects. Optical circuitry is built up on PCBs using UV lithography; 45/spl deg/ input/output (I/O) couplers are fabricated by inclined exposure. Commercial polymers are used as optical core and cladding materials. Critical mirror properties of angle, surface quality, reflectivity, and coupling efficiency are characterized experimentally and theoretically. Optical and scanning electron microscopy, white light interferometry, and fiber scanning method are used in the investigations. Sloping profiles measured as a function of the incident light showed the attainment of mirror angles of /spl alpha/=36/spl deg/-45/spl deg/ with /spl plusmn/2/spl deg/ consistency. Near-field optical imaging with a white light source showed that out-of-plane beam turning was achieved. Topography investigations revealed a rectilinear negative tapering shape regardless of the incoming beam angle or type of substrate. However, higher substrate reflectancy was observed to lower the mirror angle. The average propagation loss measured for 10-cm-long waveguides at /spl lambda/=850 nm by the cut-back method was 0.60 dB/cm; the excess loss calculated for the mirror coupling was 1.8-2.3 dB. The results showed that the IMMs can be incorporated in O/E-PCBs to couple light in and out of planar waveguides. Furthermore, the presented results indicate that optical waveguides with integrated micromirrors for optical 3-D wiring can be produced compatible with volume manufacturing techniques.  相似文献   

16.
We have investigated an Mg-doped In/sub x/O/sub y/(MIO)-Ag scheme for the formation of high-quality ohmic contacts to p-type GaN for flip-chip light-emitting diodes (LEDs). The as-deposited sample shows nonlinear current-voltage (I--V) characteristics. However, annealing the contacts at temperatures of 330/spl deg/C-530/spl deg/C for 1 min in air ambient results in linear I--V behaviors, producing specific contact resistances of 10/sup -4/--10/sup -5/ /spl Omega//spl middot/cm/sup 2/. In addition, blue LEDs fabricated with the MIO-Ag contact layers give forward-bias voltages of 3.13-3.15 V at an injection current of 20 mA. It is further shown that LEDs made with the MIO-Ag contact layers give higher output power compared with that with the Ag contact layer. This result strongly indicates that the MIO-Ag can be a promising scheme for the realization of high brightness LEDs for solid-state lighting application.  相似文献   

17.
A Ge quantum dot (QD) light-emitting diode (LED) is demonstrated using a MOS tunneling structure for the first time. The oxide film was grown by liquid phase deposition at 50/spl deg/C to reduce the thermal budget. The infrared emission of /spl sim/1.5 /spl mu/m was observed from Ge QD MOS LEDs, similar to the p-type-intrinsic-n-type structure reported previously. At the negative gate bias, the electrons in the Al gate electrode tunnel to the Ge QD through the ultrathin oxide and recombine radiatively with holes to emit the /spl sim/1.5/spl mu/m infrared. The electrons also recombine with holes in the Si cap, and the band edge emission from Si is also observed.  相似文献   

18.
GaN-based light-emitting diodes (LEDs) with various p-cap layers were prepared. It was found that surface morphologies of the LEDs with 800/spl deg/C grown cap layers were rough due to the low lateral growth rate of GaN. It was also found that 20-mA forward voltage of the LED with 800/spl deg/C grown p-AlInGaN-GaN double-cap layer was only 3.05 V. Furthermore, it was found that we could achieve a high output power and a long lifetime by using the 800/spl deg/C grown p-AlInGaN-GaN double-cap layer.  相似文献   

19.
High-power 1320-nm wafer-bonded VCSELs with tunnel junctions   总被引:8,自引:0,他引:8  
A new long-wavelength vertical-cavity surface-emitting laser structure is described that utilizes AlGaAs-GaAs mirrors bonded to AlInGaAs-InP quantum wells with an intracavity buried tunnel junction. This structure offers complete wavelength flexibility in the 1250-1650 nm fiber communication bands and reduces the high free-carrier losses and bonded junction voltage drops in previous devices. The intracavity contacts electrically bypass the bonded junctions to reduce threshold voltage. N-type current spreading layers and undoped AlGaAs mirrors minimize optical losses. This has enabled 134/spl deg/C maximum continuous-wave lasing temperature, 2-mW room-temperature continuous-wave single-mode power, and 1-mW single-mode power at 80/spl deg/C, in various devices in the 1310-1340 nm wavelength range.  相似文献   

20.
High-temperature stable flexible polymer waveguide laminates   总被引:1,自引:0,他引:1  
Kopetz  S. Rabe  E. Neyer  A. 《Electronics letters》2006,42(11):634-635
A large area (390/spl times/150 mm) flexible polymer optical waveguide foil and its production process is presented. The waveguide materials are highly transparent, refractive index tuned polysiloxanes. The waveguide layer is embedded between two flexible PCB laminates. The optical loss at 850 nm is <0.06 dB/cm even after temperature treatments up to lead-free soldering temperatures of 290/spl deg/C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号