首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
Base pairing between U2 snRNA and the branchpoint sequence (BPS) is essential for pre-mRNA splicing. Because the metazoan BPS is short and highly degenerate, this interaction alone is insufficient for specific binding of U2 snRNP. The splicing factor U2AF binds to the pyrimidine tract at the 3' splice site in the earliest spliceosomal complex, E, and is essential for U2 snRNP binding in the spliceosomal complex A. We show that the U2 snRNP protein SAP 155 UV cross-links to pre-mRNA on both sides of the BPS in the A complex. SAP 155's downstream cross-linking site is immediately adjacent to the U2AF binding site, and the two proteins interact directly in protein-protein interaction assays. Using UV cross-linking, together with functional analyses of pre-mRNAs containing duplicated BPSs, we show a direct correlation between BPS selection and UV cross-linking of SAP 155 on both sides of the BPS. Together, our data are consistent with a model in which U2AF binds to the pyrimidine tract in the E complex and then interacts with SAP 155 to recruit U2 snRNP to the BPS.  相似文献   

4.
Requirements for intron recognition during pre-mRNA splicing in plants differ from those in vertebrates and yeast. Plant introns contain neither conserved branch points nor distinct 3' splice site-proximal polypyrimidine tracts characteristic of the yeast and vertebrate introns, respectively. However, they are strongly enriched in U residues throughout the intron, property essential for splicing. To understand the roles of different sequence elements in splicing, we are characterizing proteins involved in intron recognition in plants. In this work we show that Nicotiana plumbaginifolia, a dicotyledonous plant, contains two genes encoding different homologs of the large 50-65-kDa subunit of the polypyrimidine tract binding factor U2AF, characterized previously in animals and Schizosaccharomyces pombe. Both plant U2AF65 isoforms, referred to as NpU2AF65a and NpU2AF65b, support splicing of an adenovirus pre-mRNA in HeLa cell nuclear extracts depleted of the endogenous U2AF factor. Both proteins interact with RNA fragments containing plant introns and show affinity for poly(U) and, to a lesser extend, poly(C) and poly(G). The branch point or the 3' splice site regions do not contribute significantly to intron recognition by NpU2AF65. The existence of multiple isoforms of U2AF may be quite general in plants because two genes expressing U2AF65 have been identified in Arabidopsis, and different isoforms of the U2AF small subunit are expressed in rice.  相似文献   

5.
6.
We have determined the crystal structure at 2.4 A resolution of a ternary complex between the spliceosomal U2B"/U2A' protein complex and hairpin-loop IV of U2 small nuclear RNA. Unlike its close homologue the U1A protein, U2B" binds to its cognate RNA only in the presence of U2A', which contains leucine-rich repeats in its sequence. The concave surface of a parallel beta-sheet within the leucine-rich-repeat region of U2A' interacts with the ribonucleoprotein domain of U2B" on the surface opposite its RNA-binding surface. The basic carboxy-terminal region of U2A' interacts with the RNA stem. The crystal structure reveals how protein-protein interaction regulates RNA-binding specificity, and how replacing only a few key residues allows the U2B" and U1A proteins to discriminate between their cognate RNA hairpins by forming alternative networks of interactions.  相似文献   

7.
Selection of pre-mRNA splice sites is a highly accurate process involving many trans-acting factors. Recently, we described a role for U6 snRNA position G52 in selection of the first intron nucleotide (+1G). Because some U2 alleles suppress U6-G52 mutations, we investigated whether the corresponding U2 snRNA region also influenced 5' splice site selection. Our results demonstrate that U2 snRNAs mutated at position U23, but not adjacent nucleotides, specifically affect 5' splice site cleavage. Furthermore, all U2 position U23 mutations are synthetic lethal with the thermosensitive U6-G52U allele. Interestingly, the U2-U23C substitution has an unprecedented hyperaccurate splicing phenotype in which cleavage of introns with a +1G substitution is reduced, whereas the strain grows with wild-type kinetics. U2 position U23 forms the first base pair with U6 position A59 in U2/U6 helix Ib. Restoration of the helical structure suppresses 5' splice site cleavage defects, showing an important role for the helix Ib structure in 5' splice site selection. U2/U6 helix Ib and helix II have recently been described as being functionally redundant. This report demonstrates a unique role for helix Ib in 5' splice site selection that is not shared with helix II.  相似文献   

8.
Mice with maternal and paternal disomy for chromosome 11 (Chr 11) show growth retarded and overgrowth phenotypes, respectively, which can be attributed to genomic imprinting. Previous studies have defined the region of Chr 11 responsible (the Chr 11 imprinting region) as lying proximal to the T30H translocation breakpoint at the borders of G-bands 11B1.2 and 11B1.3. Evidence is presented here with two new translocations, T57H and T41Ad, which sequentially reduce the size of the imprinting region and locate it proximal to the T41Ad breakpoint in G-band 11A3.2. It therefore lies close to the centromere. The imprinted gene, U2af1-rs1, is known to be located within the original region and has been regarded as a candidate for the imprinting effects. Meiotic and mitotic chromosome FISH analysis, together with U2af1-rs1 expression studies are now described which show that the gene lies within the newly defined imprinting region and that its expression levels relate to the presence/absence and number of functional paternal alleles. U2af1-rs1 therefore remains a candidate gene for the Chr 11 imprinting effects. However, another recently reported imprinted gene, Meg1/Grb10, that lies within the region is also a good candidate, as it encodes a growth factor receptor. Meg1/Grb10 maps about 15 cM from U2af1-rs1 and is separated by conserved regions showing homology with two different human chromosomes. For these reasons, and because the two human homologues of U2af1-rs1 and Meg1/Grb10 also lie on different chromosomes, it would seem likely that the two genes identify two distinct imprinting domains within the small proximal region of mouse Chr 11.  相似文献   

9.
10.
11.
12.
A genetic screen was devised to identify Saccharomyces cerevisiae splicing factors that are important for the function of the 5' end of U2 snRNA. Six slt (stands for synthetic lethality with U2) mutants were isolated on the basis of synthetic lethality with a U2 snRNA mutation that perturbs the U2-U6 snRNA helix II interaction. SLT11 encodes a new splicing factor and SLT22 encodes a new RNA-dependent ATPase RNA helicase (D. Xu, S. Nouraini, D. Field, S. J. Tang, and J. D. Friesen, Nature 381:709-713, 1996). The remaining four slt mutations are new alleles of previously identified splicing genes: slt15, previously identified as prp17 (slt15/prp17-100), slt16/smd3-1, slt17/slu7-100, and slt21/prp8-21. slt11-1 and slt22-1 are synthetically lethal with mutations in the 3' end of U6 snRNA, a region that affects U2-U6 snRNA helix II; however, slt17/slu7-100 and slt21/prp8-21 are not. This difference suggests that the latter two factors are unlikely to be involved in interactions with U2-U6 snRNA helix II but rather are specific to interactions with U2 snRNA. Pairwise synthetic lethality was observed among slt11-1 (which affects the first step of splicing) and several second-step factors, including slt15/prp17-100, slt17/slu7-100, and prp16-1. Mutations in loop 1 of U5 snRNA, a region that is implicated in the alignment of the two exons, are synthetically lethal with slu4/prp17-2 and slu7-1 (D. Frank, B. Patterson, and C. Guthrie, Mol. Cell. Biol. 12:5179-5205, 1992), as well as with slt11-1, slt15/prp17-100, slt17/slu7-100, and slt21/prp8-21. These same U5 snRNA mutations also interact genetically with certain U2 snRNA mutations that lie in the helix I and helix II regions of the U2-U6 snRNA structure. Our results suggest interactions among U2 snRNA, U5 snRNA, and Slt protein factors that may be responsible for coupling and coordination of the two reactions of pre-mRNA splicing.  相似文献   

13.
Two simple chromenes with anti-JH activity have been isolated and identified from the bedding plant Ageratum houstoianum. By contact and fumigation these compounds induce precocious metamorphosis and sterilization in several hemipteran species of insects. Certain holometabolous species are sterilized, forced into diapause, or both. Each of these biological actions is equivalent to removal of the corpora allata, which produce the JH's, and is reversible by treatment with exogenous JH. Thus, the action of these compounds is to stop the production or depress the titer of the JH's. To our knowledge, this is the first discovery of anti-JH, and we hope it will guide the way to the emergence of a fourth generation of safe and insect-specific pesticides.  相似文献   

14.
15.
Crystal structures of adenine-specific Ustilago sphaerogena ribonuclease U2 complexed with the substrate analogues, d(ApG), d(ApGpG), and d(ApGpC), with the intermediate analogue, 2',3'-O-isopropylidene-adenosine, and with the product, 3'-AMP, have been determined. In each structure, the adenine base is recognized by the enzyme with four hydrogen-bonds. In the substrate analogue structures, the second base of guanine is sandwiched between His 101 and Tyr 107 side-chains, and forms two hydrogen-bonds with Tyr 107 O and Asp 108 O delta 1 atoms. The third base of the trinucleotides is in van der Waals interaction with the Tyr 78 side-chain. The phosphate group between the second and third nucleosides forms two hydrogen-bonds with the side chains of Asp 37 and Tyr 78. Oxygen atoms of the scissile phosphate group are involved in interactions with catalytic residues of Tyr 39, His 41, Glu 62, Arg 85, and His 101. These interactions indicate that either His 41 or Glu 62 acts as a general base and His 101 acts as a general acid in the first step of RNA hydrolysis.  相似文献   

16.
The use of transgenic animals for in vivo mutagenicity studies following rescue of the bacterial lacZ transgene has been hindered by the sheer scale of the experimental work involved. We describe here a new positive selection protocol which is based upon a modified E. coli bacterial host. This new system is potentially capable of generating mutation data much faster and more cheaply than previous methods.  相似文献   

17.
BACKGROUND: The dynamic rearrangements of RNA structure which occur during pre-mRNA splicing are thought to be mediated by members of the DExD/H-box family of RNA-dependent ATPases. Although three DExD/H-box splicing factors have recently been shown to unwind synthetic RNA duplexes in purified systems, in no case has the natural biological substrate been identified. A duplex RNA target of particular interest is the extensive base-pairing interaction between U4 and U6 small nuclear RNAs. Because these helices must be disrupted to activate the spliceosome for catalysis, this rearrangement is believed to be tightly regulated in vivo. RESULTS: We have immunopurified Brr2, a DEIH-box ATPase, in a native complex containing U1, U2, U5 and duplex U4/U6 small nuclear ribonucleoprotein particles (snRNPs). Addition of hydrolyzable ATP to this complex results in the disruption of U4/U6 base-pairing, and the release of free U4 and U6 snRNPs. A mutation in the helicase-like domain of Brr2 (brr2-1) prevents these RNA rearrangements. Notably, U4/U6 dissociation and release occur in the absence of exogenously added pre-mRNA. CONCLUSIONS: Disruption of U4/U6 base-pairing in native snRNPs requires ATP hydrolysis and Brr2. This is the first assignment of a DExD/H-box splicing factor to a specific biological unwinding event. The unwinding function of Brr2 can be antagonized by the annealing activity of Prp24. We propose the existence of a dynamic cycle, uncoupled from splicing, that interconverts free and base-paired U4/U6 snRNPs.  相似文献   

18.
The spliceosomal proteins U1A and U2B" each use a homologous RRM domain to bind specifically to their respective snRNA targets, U1hpll and U2hpIV, two stem-loops that are similar yet distinct in sequence. Previous studies have shown that binding of U2B" to U2hpIV is facilitated by the ancillary protein U2A', whereas specific binding of U1A to U1hpll requires no cofactor. Here we report that U2A' enables U2B" to distinguish the loop sequence of U2hpIV from that of U1hpll but plays no role in stem sequence discrimination. Although U2A' can also promote heterospecific binding of U1A to U2hpIV, a much higher concentration of the ancillary protein is required due to the approximately 500-fold greater affinity of U2A' for U2B". Additional experiments have identified a single leucine residue in U1A(Leu-44) that is critical for the intrinsic specificity of this protein for the loop sequence of U1 hpll in preference to that of U2hpIV. Our data suggest that most of the difference in RNA-binding specificity between U1A and U2B" can be accounted for by this leucine residue and by the contribution of the ancillary protein U2A' to the specificity of U2B".  相似文献   

19.
20.
U     
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号