首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Developing low cost, long life, and high capacity rechargeable batteries is a critical factor towards developing next‐generation energy storage devices for practical applications. Therefore, a simple method to prepare graphene‐coated FeS2 embedded in carbon nanofibers is employed; the double protection from graphene coating and carbon fibers ensures high reversibility of FeS2 during sodiation/desodiation and improved conductivity, resulting in high rate capacity and long‐term life for Na+ (305.5 mAh g?1 at 3 A g?1 after 2450 cycles) and K+ (120 mAh g?1 at 1 A g?1 after 680 cycles) storage at room temperature. Benefitting from the enhanced conductivity and protection on graphene‐encapsulated FeS2 nanoparticles, the composites exhibit excellent electrochemical performance under low temperature (0 and ?20 °C), and temperature tolerance with stable capacity as sodium‐ion half‐cells. The Na‐ion full‐cells based on the above composites and Na3V2(PO4)3 can afford reversible capacity of 95 mAh g?1 at room temperature. Furthermore, the full‐cells deliver promising discharge capacity (50 mAh g?1 at 0 °C, 43 mAh g?1 at ?20 °C) and high energy density at low temperatures. Density functional theory calculations imply that graphene coating can effectively decrease the Na+ diffusion barrier between FeS2 and graphene heterointerface and promote the reversibility of Na+ storage in FeS2, resulting in advanced Na+ storage properties.  相似文献   

2.
Abstract

The ratio between the components determines the capacity of MoS2/carbon materials in lithium-ion batteries (LIB). However, the structure of the carbon component and the synthesis conditions determine the amount of MoS2 that can be efficiently used in each particular case. We study the influence of components ratio in MoS2/multilayer holey graphene (HG) materials on the capacity in LIB. The synthesis was carried out by hot pressing of MoS3 and HG mixtures at 600?°C and 100?bar. These synthesis conditions resulted in the decomposition of MoS3 with the formation of MoS2 nanocrystals. Optimal component distribution and better cycling performance, reaching 591 mAh g?1 at a current density of 0.1?A g?1 and 408 mAh g?1 at 1?A g?1, were found for MoS2/HG containing 30?wt.% of MoS2. An increase of the MoS2 ratio led to a decrease of cycling stability and capacity of the material.  相似文献   

3.
Si/Graphene nanoparticles represent attractive alternative anode materials for Lithium-ion batteries. Graphene nanosheets with different properties, including surface area, defect distance, and charge-transfer resistance, were fabricated and characterised in Si/Graphene nanocomposites formed by static-electric self-assembly then by an in-situ reduction process. Graphene nanosheets that exhibited the highest surface area, the shortest defect distance, and the lowest charge-transfer resistance demonstrated the best overall electrochemical performance, with a high initial discharge capacity of 2692?mAh?g?1, good cycling performance of 1135?mAh?g?1, at the 200th cycle at the current rate of 0.5?C. This work shows the preferable graphene quality for Si/Graphene nanocomposite anode and provides insights into the design of graphene nanocomposite electrodes, regardless of the graphene synthesis method.  相似文献   

4.
A facile vacuum filtration method is applied for the first time to construct sandwich‐structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium‐ion battery exhibits reversible capacities of 1401 mAh g?1 during the 200th cycle at current density of 100 mA g?1 indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N‐methyl pyrrolidone (NMP).  相似文献   

5.
Silicon holds great promise as an anode material for lithium‐ion batteries with higher energy density; its implication, however, is limited by rapid capacity fading. A catalytic growth of graphene cages on composite particles of magnesium oxide and silicon, which are made by magnesiothermic reduction reaction of silica particles, is reported herein. Catalyzed by the magnesium oxide, graphene cages can be conformally grown onto the composite particles, leading to the formation of hollow graphene‐encapsulated Si particles. Such materials exhibit excellent lithium storage properties in terms of high specific capacity, remarkable rate capability (890 mAh g?1 at 5 A g?1), and good cycling retention over 200 cycles with consistently high coulombic efficiency at a current density of 1 A g?1. A full battery test using LiCoO2 as the cathode demonstrates a high energy density of 329 Wh kg?1.  相似文献   

6.
Tin (Sn) is considered to be an ideal candidate for the anode of sodium ion batteries. However, the design of Sn‐based electrodes with maintained long‐term stability still remains challenging due to their huge volume expansion (≈420%) and easy pulverization during cycling. Herein, a facile and versatile strategy for the synthesis of nitrogen‐doped graphene quantum dot (GQD) edge‐anchored Sn nanodots as the pillars into reduced graphene oxide blocks (NGQD/Sn‐NG) for ultrafast and ultrastable sodium‐ion storage is reported. Sn nanodots (2–5 nm) anchored at the edges of “octopus‐like” GQDs via covalent Sn? O? C/Sn? N? C bonds function as the pillars that ensure fast Na‐ion/electron transport across the graphene blocks. Moreover, the chemical and spatial (layered structure) confinements not only suppress Sn aggregation, but also function as physical barriers for buffering volume change upon sodiation/desodiation. Consequently, the NGQD/Sn‐NG with high structural stability exhibits excellent rate performance (555 mAh g?1 at 0.1 A g?1 and 198 mAh g?1 at 10 A g?1) and ultra‐long cycling stability (184 mAh g?1 remaining even after 2000 cycles at 5 A g?1). The confinement‐induced synthesis together with remarkable electrochemical performances should shed light on the practical application of highly attractive tin‐based anodes for next generation rechargeable sodium batteries.  相似文献   

7.
From graphene oxide wrapped iron oxide particles with etching/reduction process, high‐performance anode and cathode materials of lithium‐ion hybrid supercapacitors are obtained in the same process with different etching conditions, which consist of partially etched crumpled graphene (CG) wrapped spiky iron oxide particles (CG@SF) for a battery‐type anode, and fully etched CG for a capacitive‐type cathode. The CG is formed along the shape of spikily etched particles, resulting in high specific surface area and electrical conductivity, thus the CG‐based cathode exhibits remarkable capacitive performance of 210 F g?1 and excellent rate capabilities. The CG@SF can also be ideal anode materials owing to spiky and porous morphology of the particles and tightly attached crumpled graphene onto the spiky particles, which provides structural stability and low contact resistance during repetitive lithiation/delithiation processes. The CG@SF anode shows a particularly high capacitive performance of 1420 mAh g?1 after 270 cycles, continuously increases capacity beyond the 270th cycle, and also maintains a high capacity of 170 mAh g?1 at extremely high speeds of 100 C. The full‐cell exhibits a higher energy density up to 121 Wh kg?1 and maintains high energy density of 60.1 Wh kg?1 at 18.0 kW kg?1. This system could thus be a practical energy storage system to fill the gap between batteries and supercapacitors.  相似文献   

8.
SnO2‐based lithium‐ion batteries have low cost and high energy density, but their capacity fades rapidly during lithiation/delithiation due to phase aggregation and cracking. These problems can be mitigated by using highly conducting black SnO2?x , which homogenizes the redox reactions and stabilizes fine, fracture‐resistant Sn precipitates in the Li2O matrix. Such fine Sn precipitates and their ample contact with Li2O proliferate the reversible Sn → Li x Sn → Sn → SnO2/SnO2?x cycle during charging/discharging. SnO2?x electrode has a reversible capacity of 1340 mAh g?1 and retains 590 mAh g?1 after 100 cycles. The addition of highly conductive, well‐dispersed reduced graphene oxide further stabilizes and improves its performance, allowing 950 mAh g?1 remaining after 100 cycles at 0.2 A g?1 with 700 mAh g?1 at 2.0 A g?1. Conductivity‐directed microstructure development may offer a new approach to form advanced electrodes.  相似文献   

9.
Exploring high‐rate electrode materials with excellent kinetic properties is imperative for advanced sodium‐storage systems. Herein, novel cubic‐like X? Fe (X = Co, Ni, Mn) Prussian blue analogs (PBAs), as cathodes materials, are obtained through as‐tuned ionic bonding, delivering improved crystallinity and homogeneous particles size. As expected, Ni‐Fe PBAs show a capacity of 81 mAh g?1 at 1.0 A g?1, mainly resulting from their physical–chemical stability, fast kinetics, and “zero‐strain” insertion characteristics. Considering that the combination of elements incorporated with carbon may increase the rate of ion transfer and improve the lifetime of cycling stability, they are expected to derive binary metal‐selenide/nitrogen‐doped carbon as anodes. Among them, binary Ni0.67Fe0.33Se2 coming from Ni‐Fe PBAs shows obvious core–shell structure in a dual‐carbon matrix, leading to enhanced electron interactions, electrochemical activity, and “metal‐like” conductivity, which could retain an ultralong‐term stability of 375 mAh g?1 after 10 000 loops even at 10.0 A g?1. The corresponding full‐cell Ni‐Fe PBAs versus Ni0.67Fe0.33Se2 deliver a remarkable Na‐storage capacity of 302.2 mAh g?1 at 1.0 A g?1. The rational strategy is anticipated to offer more possibilities for designing advanced electrode materials used in high‐performance sodium‐ion batteries.  相似文献   

10.
The lithium and sodium storage performances of SnS anode often undergo rapid capacity decay and poor rate capability owing to its huge volume fluctuation and structural instability upon the repeated charge/discharge processes. Herein, a novel and versatile method is described for in situ synthesis of ultrathin SnS nanosheets inside and outside hollow mesoporous carbon spheres crosslinked reduced graphene oxide networks. Thus, 3D honeycomb‐like network architecture is formed. Systematic electrochemical studies manifest that this nanocomposite as anode material for lithium‐ion batteries delivers a high charge capacity of 1027 mAh g?1 at 0.2 A g?1 after 100 cycles. Meanwhile, the as‐developed nanocomposite still retains a charge capacity of 524 mAh g?1 at 0.1 A g?1 after 100 cycles for sodium‐ion batteries. In addition, the electrochemical kinetics analysis verifies the basic principles of enhanced rate capacity. The appealing electrochemical performance for both lithium‐ion batteries and sodium‐ion batteries can be mainly related to the porous 3D interconnected architecture, in which the nanoscale SnS nanosheets not only offer decreased ion diffusion pathways and fast Li+/Na+ transport kinetics, but also the 3D interconnected conductive networks constructed from the hollow mesoporous carbon spheres and reduced graphene oxide enhance the conductivity and ensure the structural integrity.  相似文献   

11.
Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N‐rich few‐layer graphene (N‐FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g‐C3N4) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N‐FLG‐T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N‐FLG‐800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N‐FLG‐800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g?1 at 40 A g?1) and excellent long‐term stability (211.3 mAh g?1 at 0.5 A g?1 after 2000 cycles), demonstrating the effectiveness of material design.  相似文献   

12.
Exploitation of high‐performance anode materials is essential but challenging to the development of sodium‐ion batteries (SIBs). Among all proposed anode materials for SIBs, sulfides have been proved promising candidates due to their unique chemical and physical properties. In this work, a facile solvothermal method to in situ decorate cobalt sulfide (CoS) nanoplates on reduced graphene oxide (rGO) to build CoS@rGO composite is described. When evaluated as anode for SIBs, an impressive high specific capacity (540 mAh g?1 at 1 A g?1), excellent rate capability (636 mAh g?1 at 0.1 A g?1 and 306 mAh g?1 at 10 A g?1), and extraordinarily cycle stability (420 mAh g?1 at 1 A g?1 after 1000 cycles) have been demonstrated by CoS@rGO composite for sodium storage. The synergetic effect between the CoS nanoplates and rGO matrix contributes to the enhanced electrochemical performance of the hybrid composite. The results provide a facile approach to fabricate promising anode materials for high‐performance SIBs.  相似文献   

13.
SnS2 has been widely studied as an anode material for sodium‐ion batteries (SIBs) based on the high theoretical capacity and layered structure. Unfortunately, rapid capacity decay associated with volume variation during cycling limits practical application. Herein, SnS2/Co3S4 hollow nanocubes anchored on S‐doped graphene are synthesized for the first time via coprecipitation and hydrothermal methods. When applied as the anode for SIBs, the sample delivers a distinguished charge specific capacity of 1141.8 mAh g?1 and there is no significant capacity decay (0.1 A g?1 for 50 cycles). When the rate is increased to 0.5 A g?1, it presents 845.7 mAh g?1 after cycling 100 times. Furthermore, the composite also exhibits an ultrafast sodium storage capability where 392.9 mAh g?1 can be obtained at 10 A g?1 and the charging time is less than 3 min. The outstanding electrochemical properties can be ascribed to the enhancement of conductivity for the addition of S‐doped graphene and the existence of p–n junctions in the SnS2/Co3S4 heterostructure. Moreover, the presence of mesopores between nanosheets can alleviate volume expansion during cycling as well as being beneficial for the migration of Na+.  相似文献   

14.
Yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long‐term cycling. Specifically, the NiO with carboxyl‐functionalized GQDs (NiO/GQDs? COOH) exhibits better performances than NiO with amino‐functionalized GQDs (NiO/GQDs? NH2). It delivers a capacity of ≈1081 mAh g?1 (NiO contribution: ≈1182 mAh g?1) after 250 cycles at 0.1 A g?1. In comparison, NiO/GQDs? NH2 electrode holds ≈834 mAh g?1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g?1 retained after cycling. Except for the yolk–shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li+. Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li+ and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance.  相似文献   

15.
Molybdenum ditelluride nanosheets encapsulated in few‐layer graphene (MoTe2/FLG) are synthesized by a simple heating method using Te and Mo powder and subsequent ball milling with graphite. The as‐prepared MoTe2/FLG nanocomposites as anode materials for lithium‐ion batteries exhibit excellent electrochemical performance with a highly reversible capacity of 596.5 mAh g?1 at 100 mA g?1, a high rate capability (334.5 mAh g?1 at 2 A g?1), and superior cycling stability (capacity retention of 99.5% over 400 cycles at 0.5 A g?1). Ex situ X‐ray diffraction and transmission electron microscopy are used to explore the lithium storage mechanism of MoTe2. Moreover, the electrochemical performance of a MoTe2/FLG//0.35Li2MnO3·0.65LiMn0.5Ni0.5O2 full cell is investigated, which displays a reversible capacity of 499 mAh g?1 (based on the MoTe2/FLG mass) at 100 mA g?1 and a capacity retention of 78% over 50 cycles, suggesting the promising application of MoTe2/FLG for lithium‐ion storage. First‐principles calculations exhibit that the lowest diffusion barrier (0.18 eV) for lithium ions along pathway III in the MoTe2 layered structure is beneficial for improving the Li intercalation/deintercalation property.  相似文献   

16.
Red phosphorus (P) has attracted intense attention as promising anode material for high‐energy density sodium‐ion batteries (NIBs), owing to its high sodium storage theoretical capacity (2595 mAh g?1). Nevertheless, natural insulating property and large volume variation of red P during cycling result in extremely low electrochemical activity, leading to poor electrochemical performance. Herein, the authors demonstrate a rational strategy to improve sodium storage performance of red P by confining nanosized amorphous red P into zeolitic imidazolate framework‐8 (ZIF‐8) ‐derived nitrogen‐doped microporous carbon matrix (denoted as P@N‐MPC). When used as anode for NIBs, the P@N‐MPC composite displays a high reversible specific capacity of ≈600 mAh g?1 at 0.15 A g?1 and improved rate capacity (≈450 mAh g?1 at 1 A g?1 after 1000 cycles with an extremely low capacity fading rate of 0.02% per cycle). The superior sodium storage performance of the P@N‐MPC is mainly attributed to the novel structure. The N‐doped porous carbon with sub‐1 nm micropore facilitates the rapid diffusion of organic electrolyte ions and improves the conductivity of the encapsulated red P. Furthermore, the porous carbon matrix can buffer the volume change of red P during repeat sodiation/desodiation process, keeping the structure intact after long cycle life.  相似文献   

17.
Currently, the specific capacity and cycling performance of various MoS2/carbon‐based anode materials for Na‐ion storage are far from satisfactory due to the insufficient structural stability of the electrode, incomplete protection of MoS2 by carbon, difficult access of electrolyte to the electrode interior, as well as inactivity of the adopted carbon matrix. To address these issues, this work presents the rational design and synthesis of 3D interconnected and hollow nanocables composed of multiwalled carbon@MoS2@carbon. In this architecture, (i) the 3D nanoweb‐like structure brings about excellent mechanical property of the electrode, (ii) the ultrathin MoS2 nanosheets are sandwiched between and doubly protected by two layers of porous carbon, (iii) the hollow structure of the primary nanofibers facilitates the access of electrolyte to the electrode interior, (iv) the porous and nitrogen‐doping properties of the two carbon materials lead to synergistic Na‐storage of carbon and MoS2. As a result, this hybrid material as the anode material of Na‐ion battery exhibits fast charge‐transfer reaction, high utilization efficiency, and ultrastability. Outstanding reversible capacity (1045 mAh g?1), excellent rate behavior (817 mAh g?1 at 7000 mA g?1), and good cycling performance (747 mAh g?1 after 200 cycles at 700 mA g?1) are obtained.  相似文献   

18.
Three-dimensional mesoporous boron-doped carbon microspheres (B-CMs) were synthesized through a facile impregnation-calcination method. The B atoms introduced plentiful defects into the surfaces of CMs and were mainly presented in the form of boron carbide, which increases the specific surface area of the composite material and endows it with enhanced catalytic activity. A rechargeable aluminum (Al-)-air battery with B-CMs catalysts exhibited low overpotentials and its effective discharge capacity reached 300 mAh g?1 at the current density of 50?mA g?1. The capacity of Al-air battery was maintained at 584 mAh g?1 after 30 cycles.  相似文献   

19.
Spinel LiMn2O4 powder was prepared by a novel process of high-temperature ball milling. For comparison, the spinel LiMn2O4 powder was also synthesized by the traditional method of solid state reaction. It was found that high-temperature ball milling significantly decreased the synthesis temperature and time. LiMn2O4 with pure spinel phase could be successfully synthesized only by 2?h high-temperature ball milling at 500°C and 600°C. However, pure spinel LiMn2O4 could not be completely synthesized by 2?h solid state reaction at 800°C. The LiMn2O4 particles prepared by high-temperature ball milling are nano-sized (<100?nm) and much smaller than that prepared using solid state reaction. The electrochemical tests results indicated that the as-synthesized LiMn2O4 by 2?h high-temperature ball milling at 600°C showed a favorable initial discharge capacity of 124.2 mAh g?1 at current rate of 0.1 C and still retained a capacity of 119.8 mAh g?1 at 0.1 C after 80 continuous cycles from 0.1 to 2.0 C.  相似文献   

20.
Antimony is a competitive and promising anode material for sodium‐ion batteries (SIBs) due to its high theoretical capacity. However, the poor rate capability and fast capacity fading greatly restrict its practical application. To address the above issues, a facile and eco‐friendly sacrificial template method is developed to synthesize hollow Sb nanoparticles impregnated in open carbon boxes (Sb HPs@OCB). The as‐obtained Sb HPs@OCB composite exhibits excellent sodium storage properties even when operated at an elevated temperature of 50 °C, delivering a robust rate capability of 345 mAh g?1 at 16 A g?1 and rendering an outstanding reversible capacity of 187 mAh g?1 at a high rate of 10 A g?1 after 300 cycles. Such superior electrochemical performance of the Sb HPs@OCB can be attributed to the comprehensive characteristics of improved kinetics derived from hollow Sb nanoparticles impregnated into 2D carbon nanowalls, the existence of robust Sb? O? C bond, and enhanced pseudocapacitive behavior. All those factors enable Sb HPs@OCB great potential and distinct merit for large‐scale energy storage of SIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号