共查询到20条相似文献,搜索用时 62 毫秒
1.
基于自组织竞争神经网络技术的模糊聚类研究 总被引:2,自引:1,他引:1
本文对常规模糊聚类方法进行了深入的研究,提出了一种基于自组织竞争神经网络技术的模糊聚类方法。仿真结果证明,这种方法可以有效地进行模糊聚类。 相似文献
2.
自组织神经网络在模糊聚类中的应用研究 总被引:5,自引:0,他引:5
聚类是按照事物的某些属性,把事物分类,使类间的相似性尽量小,类内的相似性尽量大。将事物通过适当聚类,才能便于研究事物的内部规律,但客观世界中存在着大量界线不分明的问题,研究模糊聚类的方法正是为了解决这类问题。在对常规模糊聚类方法分析的基础上,提出了一种将自组织竞争神经网络技术运用于模糊聚类的一种方法,并以100种动物分类为例,进行了模拟试验,仿真结果证明这种方法进行模糊聚类的思想正确,方法可行,效果较好。 相似文献
3.
聚类是按照事物的某些属性,把事物分类,使类间的相似性尽量小,类内的相似性尽量大.将事物通过适当聚类,才能便于研究事物的内部规律,但客观世界中存在着大量界线不分明的问题,研究模糊聚类的方法正是为了解决这类问题.在对常规模糊聚类方法分析的基础上,提出了一种将自组织竞争神经网络技术运用于模糊聚类的一种方法,并以100种动物分类为例,进行了模拟试验,仿真结果证明这种方法进行模糊聚类的思想正确,方法可行,效果较好. 相似文献
4.
利用自组织特征映射神经网络进行可视化聚类 总被引:5,自引:0,他引:5
自组织特征映射作为一种神经网络方法,在数据挖掘、机器学习和模式分类中得到了广泛的应用。它将高维输人空间的数据映射到一个低维、规则的栅格上,从而可以利用可视化技术探测数据的固有特性。该文说明了自组织特征映射神经网络的工作原理和具体实现算法,同时利用一个算例展示了利用自组织特征映射进行聚类时的可视化特性,包括聚类过程的可视化和聚类结果的可视化,这也是自组织特征映射得到广泛应用的原因之一。 相似文献
5.
基于自组织神经网络的故障诊断 总被引:1,自引:0,他引:1
利用自组织神经网络对诊断对象的周期性振动信号进行处理,根据其映射特性和聚类特性,将振动信号映射到自组织网二维输出平面上。根据其映射点在输出平面上的位置,判断振动是否正常及其类型,使故障诊断简单化和直观化。 相似文献
6.
自组织特征映射神经网络SOM(Self-Organizing Feature Maps)是一种优良的聚类工具,但其存在着一些限制,如需要预先定义网络大小、网络的收敛性较差和结构不灵活等.为了克服这些不足,在自组织神经网络理论的指导下,提出了一种基于生长型自组织神经网络的聚类方法.在无监督的情况下,该方法采用阈值控制的触发机制实现网络中神经元的生长和删除,并通过神经元权值的有效调整,以期得到数据对象的聚类结果.实验以二维空间中的数据对象为输入样本,验证了该方法的有效性和优越性. 相似文献
7.
针对常用聚类方法不能有效处理噪声数据的问题,本文结合神经网络具有自适应性的特点,提出基于神经网络的聚类(NN_Cluster)模型,并设计了基于自适应共振理论的神经网络聚类模型(ARTNN_Cluster)和基于自组织特征映射的神经网络聚类模型(SOMNN_Cluster)。标准数据集上的实验结果表明,与传统的K_means聚类方法相比,本文提出的基于神经网络的聚类模型有效地克服了传统方法的噪声问题,得到了较好的聚类效果。 相似文献
8.
9.
10.
A self-organization of pulse-coupled oscillators for clustering method is studied and the defectiveness of the method is analyzed.With modification to the method a new clustering method is presented.Experiments indicate the modified method is effective. 相似文献
11.
着重阐述如何利用Paxos算法构建多节点自组织网络,提出利用该算法完成实时更新、同步节点全局视图的工作。结合该算法的开源实现开发出功能完善的原型系统,弥补开源实现中部分功能缺失所带来的应用缺陷。通过相关实验测定其具有在秒级时间内完成节点快速加入以及退出的能力。证明其具备在实际应用场景中进行部署的能力,可以满足各种分布式应用程序对底层自组织网络的高可靠性以及高可用性要求。 相似文献
12.
The list of documents returned by Internet search engines in response to a query these days can be quite overwhelming. There is an increasing need for organising this information and presenting it in a more compact and efficient manner. This paper describes a method developed for the automatic clustering of World Wide Web documents, according to their relevance to the user’s information needs, by using a hybrid neural network. The objective is to reduce the time and effort the user has to spend to find the information sought after. Clustering documents by features representative of their contents—in this case, key words and phrases—increases the effectiveness and efficiency of the search process. It is shown that a two-dimensional visual presentation of information on retrieved documents, instead of the traditional linear listing, can create a more user-friendly interface between a search engine and the user. 相似文献
13.
14.
In this paper, we introduce a concept of advanced self-organizing polynomial neural network (Adv_SOPNN). The SOPNN is a flexible
neural architecture whose structure is developed through a modeling process. But the SOPNN has a fatal drawback; it cannot
be constructed for nonlinear systems with few input variables. To relax this limitation of the conventional SOPNN, we combine
a fuzzy system and neural networks with the SOPNN. Input variables are partitioned into several subspaces by the fuzzy system
or neural network, and these subspaces are utilized as new input variables to the SOPNN architecture. Two types of the advanced
SOPNN are obtained by combining not only the fuzzy rules of a fuzzy system with SOPNN but also the nodes in a hidden layer
of neural networks with SOPNN into one methodology. The proposed method is applied to the nonlinear system with two inputs,
which cannot be identified by conventional SOPNN to show the performance of the advanced SOPNN. The results show that the
proposed method is efficient for systems with limited data set and a few input variables and much more accurate than other
modeling methods with respect to identification error. 相似文献
15.
利用SOM网络模型进行聚类研究 总被引:2,自引:0,他引:2
自组织特征映射(SOM)是Kohonen提出的一种人工神经网络模型,其整个学习过程是在输入样本空间内进行.并以欧氏距离为度量。本文先介绍了SOM网络模型的来源,接着对SOM网络的结构与学习过程进行了介绍,最后给出了一个SOM网络模型在聚类中的程序实例。 相似文献
16.
针对目前大型锅炉火焰检测手段的落后现状,提出了一种基于数字图像处理与自组织竞争神经网络进行燃烧诊断的方法,设计了一套火焰燃烧诊断系统.利用数字图像处理技术提取火焰特征量,应用神经网络的竞争学习对不同负荷下的全炉膛火焰图像进行识别分类,从而实现燃烧诊断和灭火预警的功能. 相似文献
17.
Siddhartha Bhattacharyya Paramartha Dutta Ujjwal Maulik 《Pattern Analysis & Applications》2007,10(4):345-360
A novel neural network architecture suitable for image processing applications and comprising three interconnected fuzzy layers
of neurons and devoid of any back-propagation algorithm for weight adjustment is proposed in this article. The fuzzy layers
of neurons represent the fuzzy membership information of the image scene to be processed. One of the fuzzy layers of neurons
acts as an input layer of the network. The two remaining layers viz. the intermediate layer and the output layer are counter-propagating
fuzzy layers of neurons. These layers are meant for processing the input image information available from the input layer.
The constituent neurons within each layer of the network architecture are fully connected to each other. The intermediate
layer neurons are also connected to the corresponding neurons and to a set of neighbors in the input layer. The neurons at
the intermediate layer and the output layer are also connected to each other and to the respective neighbors of the corresponding
other layer following a neighborhood based connectivity. The proposed architecture uses fuzzy membership based weight assignment
and subsequent updating procedure. Some fuzzy cardinality based image context sensitive information are used for deciding
the thresholding capabilities of the network. The network self organizes the input image information by counter-propagation
of the fuzzy network states between the intermediate and the output layers of the network. The attainment of stability of
the fuzzy neighborhood hostility measures at the output layer of the network or the corresponding fuzzy entropy measures determine
the convergence of the network operation. An application of the proposed architecture for the extraction of binary objects
from various degrees of noisy backgrounds is demonstrated using a synthetic and a real life image.
相似文献
Ujjwal MaulikEmail: |
18.
针对传统的方法很难做到根据输入向量的实际分布来设置Kohonen层各神经元对应的权向量的状况,因其会影响文本的聚类质量,所以利用人工神经网络和基因表达式编程(GEP)的互补优势,通过利用GEP在组合优化的方法进行对CPN网络中Kohonen层的联接权向量的优化,提出了一种基于GEP和CPN网络的文本聚类算法(GCTCA)。通过实验结果表明了该算法在文本聚类上的有效性与优越性。 相似文献
19.
The statistical properties of training, validation and test data play an important role in assuring optimal performance in artificial neural networks (ANNs). Researchers have proposed optimized data partitioning (ODP) and stratified data partitioning (SDP) methods to partition of input data into training, validation and test datasets. ODP methods based on genetic algorithm (GA) are computationally expensive as the random search space can be in the power of twenty or more for an average sized dataset. For SDP methods, clustering algorithms such as self organizing map (SOM) and fuzzy clustering (FC) are used to form strata. It is assumed that data points in any individual stratum are in close statistical agreement. Reported clustering algorithms are designed to form natural clusters. In the case of large multivariate datasets, some of these natural clusters can be big enough such that the furthest data vectors are statistically far away from the mean. Further, these algorithms are computationally expensive as well. We propose a custom design clustering algorithm (CDCA) to overcome these shortcomings. Comparisons are made using three benchmark case studies, one each from classification, function approximation and prediction domains. The proposed CDCA data partitioning method is evaluated in comparison with SOM, FC and GA based data partitioning methods. It is found that the CDCA data partitioning method not only perform well but also reduces the average CPU time. 相似文献
20.
The intravascular ultrasound-based tissue characterization of coronary plaque is important for the early diagnosis of acute coronary syndromes. The conventional tissue characterization techniques however cannot obtain sufficient identification accuracy for various tissue properties, because the feature employed for characterization are static features, which lack dynamical information about backscattered radio-frequency (RF) signals.In this work, we propose a new intravascular ultrasound-based tissue characterization method that uses a modular network self-organizing map (mnSOM) in which each module is composed of an autoregressive model for representing the dynamics of the RF signals.The proposed method can create a map of various dynamical features from the RF signal. This map enables generalized tissue characterizations. The proposed method is verified by comparing its tissue characterization performance with that of the conventional method using real intravascular ultrasound signals. 相似文献