首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The microwave dielectric properties and the microstructures of ZnO-doped La(Co1/2Ti1/2)O3 ceramics prepared by conventional solid-state route have been studied. Doped with ZnO (up to 0.75 wt%) can effectively promote the densification of La(Co1/2Ti1/2)O3 ceramics with low sintering temperature. At 1320 °C, La(Co1/2Ti1/2)O3 ceramics with 0.75 wt% ZnO addition possesses a dielectric constant (r) of 30.2, a Q × f value of 73,000 GHz (at 8 GHz) and a temperature coefficient of resonant frequency (τf) of −35 ppm/°C.  相似文献   

2.
The crystal structures, phase compositions and the microwave dielectric properties of the xLa(Mg1/2Ti1/2)O3-(1 − x)Ca0.8Sr0.2TiO3 composites prepared by the conventional solid state route have been investigated. The formation of solid solution is confirmed by the XRD patterns. Doping with B2O3 (0.5 wt.%) can effectively promote the densification and the dielectric properties of xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics. It is found that xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics can be sintered at 1375 °C, due to the liquid phase effect of B2O3 addition observed by Scanning Electronic Microscopy. At 1375 °C, 0.4Nd(Mg1/2Ti1/2)O3-0.6Ca0.6La0.8/3TiO3 ceramics with 1 wt.% B2O3 addition possesses a dielectric constant (?r) of 49, a Q × f value of 13,000 (at 8 GHz) and a temperature coefficients of resonant frequency (τf) of 1 ppm/°C. As the content of Nd(Mg1/2Ti1/2)O3 increases, the highest Q × f value of 20,000 GHz for x = 0.9 is achieved at the sintering temperature 1400 °C.  相似文献   

3.
In this paper, the dielectric properties of Ca1−xMgxLa4Ti5O17 ceramics at microwave frequency have been studied. The diffraction peaks of Ca(1−x)MgxLa4Ti5O17 ceramics nearly unchanged with x increasing from 0 to 0.03. Similar X-ray diffraction peaks of Ca0.99Mg0.01La4Ti5O17 ceramic were observed at different sintering temperatures. A maximum density of 5.3 g/cm3 can be obtained for Ca0.99Mg0.01La4Ti5O17 ceramic sintered at 1500 °C for 4 h. A maximum dielectric constant (r) and quality factor (Q × f) of Ca0.99Mg0.01La4Ti5O17 ceramic sintered at 1500 °C for 4 h are 56.3 and 12,300 GHz (at 6.4 GHz), respectively. A near-zero temperature coefficient of resonant frequency (τf) of −9.6 ppm/°C can be obtained for Ca0.99Mg0.01La4Ti5O17 ceramic sintered at 1500 °C for 4 h. The measurement results for the aperture-coupled coplanar patch antenna at 2.5 GHz are presented. With this technique, a 3.33% bandwidth (return loss <−10 dB) with a center frequency at approximately 2.5 GHz has been successfully achieved.  相似文献   

4.
The crystal structure and the dielectric properties of (1 − x)La(Mg0.5Ti0.5)O3-xCa0.8Sm0.4/3TiO3 ceramics have been investigated. Ca0.8Sm0.4/3TiO3 was employed as a τf compensator and was added to La(Mg0.5Ti0.5)O3 to achieve a temperature-stable material. The formation of (1 − x)La(Mg0.5Ti0.5)O3-xCa0.8Sm0.4/3TiO3 solid solutions were confirmed by the XRD results and the measured lattice parameters for all compositions. The dielectric properties are strongly correlated to the sintering temperature and the compositional ratio of the specimens. Although the ?r of the specimen could be boosted by increasing the amount of Ca0.8Sm0.4/3TiO3, it would instead render a decrease in the Q × f. The τf value is strongly correlated to the compositions and can be controlled by the existing phases. A new microwave dielectric material 0.45La(Mg0.5Ti0.5)O3-0.55Ca0.8Sm0.4/3TiO3, possessing a fine combination of microwave dielectric properties with an ?r of 47.83, a Q × f of 26,500 GHz (at 6.2 GHz) and a τf of −1.7 ppm/°C, is proposed as a very promising candidate material for today's 3G applications.  相似文献   

5.
Solid solutions of (1 − x)La(Co1/2Ti1/2)O3-xLa(Mg1/2Ti1/2)O3 were used to prepare La(Mg1−xCox)1/2Ti1/2O3 using solid-state synthesis. X-ray diffraction patterns of the sintered samples revealed single phase formation. A maximum density of 6.01 g/cm3 was obtained for La(Mg1−xCox)1/2Ti1/2O3 (x = 1) ceramics sintered at 1375 °C for 4 h. The maximum values of the dielectric constant (?r = 29.13) and the quality factor (Q × f = 80,000 GHz) were obtained for La(Mg1−xCox)1/2Ti1/2O3 with 1 wt% ZnO additive sintered at 1375 °C for 4 h. The temperature coefficient of resonant frequency τf was −59 ppm/°C for x = 0.3.  相似文献   

6.
The microwave dielectric properties and the microstructures of the (1 − x)(Mg0.6Zn0.4)0.95Co0.05TiO3xCa0.61Nd0.26TiO3 ceramic system were investigated. In order to achieve a temperature-stable material, we studied a method of combining a positive temperature coefficient material with a negative one. Ca0.61Nd0.26TiO3 has a large positive temperature coefficient of resonant frequency. (Mg0.6Zn0.4)0.95Co0.05TiO3 possesses a negative temperature coefficient of resonant frequency. By appropriately adjusting the x value in the (1 − x)(Mg0.6Zn0.4)0.95Co0.05TiO3xCa0.61Nd0.26TiO3 ceramic system, a near-zero τf value can be obtained. A new microwave dielectric material of 0.8(Mg0.6Zn0.4)0.95Co0.05TiO3–0.2Ca0.61Nd0.26TiO3 possesses the excellent dielectric properties of a dielectric constant of 28.6, a Q × f value of 80,600 GHz and a temperature coefficient of resonant frequency of 4.1 ppm/°C and has a lower sintering temperature of 1250 °C.  相似文献   

7.
The Ba0.985Na0.015Ti0.985Nb0.015O3, Ba0.6Na0.4Ti0.6Nb0.4O3 and Ba0.3Na0.7Ti0.3Nb0.7O3 compositions of the (1 − x) BaTiO3xNaNbO3 (BTNNx) system have been studied by X-ray diffraction and by measurements of dielectric properties. The specimens with composition BTNN (x = 0.015, 0.40 and 0.70) have been refined by the JANA program from X-ray powder diffraction data. Ceramic samples with composition (1 − x) BaTiO3 + xNaNbO3 (where x = 0.015, 0.40 and 0.70) were prepared by calcinations from appropriate mixture of BaCO3, TiO2, Na2CO3 and Nb2O5. The calcined powder was sintered at temperature range 1200–1400 °C. As the composition x increased from 0.015 (and 0.70), the ferroelectric ceramics (x = 0.015, FE) with tetragonal phase changed to the ferroelectric relaxors (RFE, x = 0.40). RFE ceramics showed a peculiar diffuse phase transition and dielectric relaxation at the low temperature (down to 180 K) due to a frustration between RFE and FE state. These ceramics present the classical ferroelectric character when 0 ≤ x < 0.075 and 0.55 < x ≤ 1 and relaxor character when 0.075 ≤ x ≤ 0.55.  相似文献   

8.
The oxide-ion conductors (La1−xSrx)2Mo2O9−δ (x = 0.01–0.08) were prepared by means of a conventional solid-state reaction. The effects of Sr doping for La site on the structures, electrical and thermal expansion properties of the oxide-ion conductor La2Mo2O9 were investigated using X-ray diffraction, direct current four-probe method, thermal dilatometer and scanning electron microscopy, respectively. The results show that the lattice constants were first decreased, then increased, and decreased again with the increase of Sr doping content. The solid solubility of Sr in (La1−xSrx)2Mo2O9−δ is x = 0.07. The sinterability of samples is markedly improved with the increase of Sr doping content. The sintered density of sample x > 0.07 is higher than 96% of its theoretical density. When x > 0.02, doping Sr in La2Mo2O9 can inhibit the excessive growth of grains, thus increases the sintered density of samples. The structural transition temperature shifts to the low side with the increase of Sr doping content, and the phase transition is completely suppressed when the doping content reaches 0.07. The conductivity of sample increases with the increase of Sr doping content. The conductivity of sample x = 0.07 reaches a maximum of 0.078 S/cm and 0.101 S/cm at 800 °C and 850 °C, respectively. In this study, it was demonstrated that doping 7 mol% Sr for La site not only can completely suppress the structural phase transition in La2Mo2O9, but also can effectively enhance electrical conductivity of samples at higher temperature.  相似文献   

9.
Ceramics in the system La(Mg1−xZnx)1/2Ti1/2O3 with B2O3 additions (1 wt.%) have been investigated by the conventional solid-state route. The XRD patterns of the sintered samples (0.3 ≤ x ≤ 1.0) revealed single phase formation with a structure. The unit cell volume slightly increased with increasing Zn content (x). La(Mg1−xZnx)1/2Ti1/2O3 were found to form perovskite solid solutions in the whole compositional range. The maximum values of the dielectric constant and the quality factor multiples resonant frequency (Q × f) can be obtained when the La(Mg0.7Zn0.3)1/2Ti1/2O3 with 0.5 wt.% B2O3 additive were sintered at 1475 °C for 4 h. The temperature coefficient of resonant frequency τf (−63 ppm/°C) was measured for x = 0.7.  相似文献   

10.
The microwave dielectric properties and microstructures of (1 − x)La(Mg0.5Ti0.5)O3-x(Ca0.8Sr0.2)TiO3 ceramics, prepared by a mixed oxide route, have been investigated. The forming of solid solutions was confirmed by the XRD patterns and the measured lattice parameters for all compositions. A near zero τf was achieved for samples with x = 0.5, although the dielectric properties varied with sintering temperature. The Q × f value of 0.5La(Mg0.5Ti0.5)O3-0.5(Ca0.8Sr0.2)TiO3 increased up to 1475 °C, after which it decreased. The decrease in dielectric properties was coincident with the onset of rapid grain growth. The optimum combination of microwave dielectric properties was achieved at 1475 °C for samples where x = 0.5 with a dielectric constant ?r of 47.12, a Q × f value of 35,000 GHz (measured at 6.2 GHz) and a τf value of −4.7 ppm/°C.  相似文献   

11.
Ferroelectric relaxors (1 − x)Pb(Ni1/3Nb2/3)O3−xPbTiO3 (PNN-PT) with a composition (x = 0.36) near the morphotropic phase boundary (MPB) were prepared by a polyethylene glycol (PEG)-assisted solid-state reaction route. PEG with a molecular weight of 200 was introduced during the ball milling process of the raw oxide powders. XRD and TG/DSC results demonstrated that the interaction between PbO and PEG favors the transformation of lead-rich pyrochlore to lead-deficient pyrochlore, thus facilitating the formation of perovskite phase. Consequently, pure perovskite powders were synthesized at a relatively low temperature of 850 °C. Ceramics fabricated with the PEG-assisted route show a room temperature dielectric constant of 4987 and a maximum dielectric constant (at Tmax) of 24,307 at a frequency of 1 kHz. The piezoelectric constant d33 measured was 460 pC/N.  相似文献   

12.
The effects of sintering aids additives on the microstructures and microwave dielectric properties of (1 ? x)CaTiO3xNd(Mg1/2Ti1/2)O3 ceramics were investigated. The effects of V2O5 additions on the microwave dielectric properties and the microstructures of (1 ? x)CaTiO3xNd(Mg1/2Ti1/2)O3 ceramics have been investigated. Doping with 0.5 wt% V2O5 can effectively promote the densification and the microwave dielectric properties of (1 ? x)CaTiO3xNd(Mg1/2Ti1/2)O3. It is found that CaTiO3–Nd(Mg1/2Ti1/2)O3 ceramics can be sintered at 1325 °C due to the liquid phase effect of a V2O5 additions. The dielectric constant decreases from 140 to 28 as x varies from 0.1 to 1.0. The microwave dielectric properties indicate the possibility of a phase transformation for x between 0.3 and 0.5. A low-pass filter is designed and simulated using the proposed dielectric to study its performance.  相似文献   

13.
The P2O5 + ZnO, ZrO2 + TiO2, B2O3 and a low-melting-point CaO–B2O3–SiO2 glass (LG) are selected as the sintering additives, and the effect of their additions on the microwave dielectric properties, mechanical properties and microstructures of CaO–B2O3–SiO2 system glass ceramics is investigated. It is found that the sintering temperature of pure CBS glass is higher than 950 °C and the sintering range is about 10 °C. With the above additions, the glass ceramics can be sintered between 820 °C and 900 °C. The dielectric properties of the samples are dependent on the additions, densification and microstructures of sintered bodies. The major phases of this material are CaSiO3, CaB2O4 and SiO2. With 10 wt% B2O3 and LG glass additions, the CBS glass ceramics have better mechanical properties, but worse dielectric properties. The r values of 6.51 and 7.07, the tan δ values of 0.0029 and 0.0019 at 10 GHz, are obtained for the CBS glass ceramics sintered at 860 °C with 2 wt% P2O5 + 2 wt% ZnO and 2 wt% ZrO2 + 2 wt% TiO2 additions, respectively. This material is suitable to be used as the LTCC material for the application in wireless communications.  相似文献   

14.
The microwave dielectric properties of CaTiO3-added Mg2(Ti0.95Sn0.05)O4 ceramics prepared by the mixed oxide route have been investigated. The combination of spinel-structured Mg2(Ti0.95Sn0.05)O4 and perovskite-structured CaTiO3 forms a two-phase system (1 − x)Mg2(Ti0.95Sn0.05)O4-xCaTiO3, which was confirmed by the XRD patterns and the EDX analysis and it also leads to a zero τf. The microwave dielectric properties of the ceramics can be effectively controlled by varying the x value. For practical applications, a new microwave dielectric material 0.91Mg2(Ti0.95Sn0.05)O4-0.09CaTiO3 is suggested and it possesses a good combination of dielectric properties with an ?r of ∼18.01, a Q × f of ∼92,000 GHz, and a τf of ∼0 ppm/°C, which makes it is a very promising candidate material for high frequency applications.  相似文献   

15.
Phase evolution and microwave dielectric properties of (1 − x)(Mg0.95Co0.05)2TiO4-xTiO2 (x = 0-1) ceramics prepared by the conventional mixed oxide route have been investigated. Increasing the TiO2 content would lead to a main phase transformation from (Mg0.95Co0.05)2TiO4 to (Mg0.95Co0.05)TiO3, (Mg0.95Co0.05)Ti2O5 and then TiO2. Not only did the TiO2 addition compensate the τf, it also lowered the sintering temperature of specimen. A huge drop of Q × f occurs at a 40-60 mol% TiO2 addition was attributed to the formation of (Mg0.95Co0.05)Ti2O5 phase. Specimen with x = 0.78 can possess an excellent combination of microwave dielectric properties: ?r ∼ 24.77, Q × f ∼ 38,500 GHz and τf ∼ −1.3 ppm/°C.  相似文献   

16.
La1−xSrxFeO3 (x = 0–1) perovskite, Sr-substituted LaFeO3, was prepared by Self-propagating high-temperature synthesis (SHS) and its catalytic activity for soot combustion was experimentally examined in comparison with that of a conventional Pt/Al2O3 catalyst. The products were also characterized by XRD, FE-SEM, and BET specific surface area. The XRD analysis revealed that all the products had a perovskite phase as the major compound, together with intermediate phases with higher x values (x = 0.7–1). The BET specific surface area of the products increased with x. Moreover, the catalytic activity for soot combustion also increased with x, wherein the BET specific surface area appeared an appropriate index for explaining the observed activity. The sample with x = 0.8 exhibited the highest activity for soot combustion among all the SHS products. The soot combustion temperature of this product was as much as 100 °C lower than that of non-catalytic soot combustion. In other words, it had the same activity as that at only 20 °C higher, in comparison to conventional Pt/Al2O3 catalyst. More significantly, average apparent activation energy of sample with x = 0.8 calculated by Friedman method using TG/DTA was approximately 15 kJ/mol lower than that of Pt/Al2O3 catalyst. This result suggested that La1−xSrxFeO3 has the possibility to be an alternative catalyst to Pt/Al2O3 catalyst.  相似文献   

17.
The performance of multi-layer (1 − x) La0.8Sr0.2MnO3/x YSZ graded composite cathodes was studied as electrode materials for intermediate solid oxide fuel cells (SOFC). The thermal expansion coefficient, electrical conductivity, and electrochemical performance of multi-layer composite cathodes were investigated. The thermal expansion coefficient and electrical conductivity decreased with the increase in YSZ content. The (1 -x)La0.8Sr0.2MnO3/x YSZ composite cathode greatly increased the length of the active triple phase boundary line (TPBL) among electrode, electrolyte, and gas phase, leading to a decrease in polarization resistance and an increase in polarization current density. The polarization current density of the triple-layer graded composite cathode (0.77 A/cm2) was the highest and that of the monolayer cathode (0.13 A/cm2) was the lowest. The polarization resistance (Rp) of the triple-layer graded composite cathode was only 0.182 ω·cm2 and that of the monolayer composite cathode was 0.323 ω·cm2. The power density of the triple-layer graded composite cathode was the highest and that of the monolayer composite cathode was the lowest. The triple-layer graded composite cathode had superior performance.  相似文献   

18.
Nickel-doped iron-deficient cobalt ferrite with small amount of manganese having the chemical composition Co1−xNixFe1.9Mn0.1O4, with x = 0.2, 0.4, 0.6 and 0.8, were prepared by standard double sintering ceramic method. The spinel phase formation was confirmed by X-ray diffraction (XRD). The DC resistivity measurements with temperature indicate a semiconducting behavior showing a linear decrease with increasing temperature and the doping of Ni enhances the resistivity. Maximum resistivity of the order of 109 Ω cm was found for composition x = 0.8. Room temperature dielectric constant measurements with frequency (100 Hz to 1 MHz), show usual dielectric dispersion. Also, the variation of room temperature AC conductivity as a function of frequency were studied and explained by using Maxwell–Wagner two-layer model. The studies on dielectric constant (′), loss tangent (tan δ) and AC conductivity (σAC), at four different frequencies (viz., 1, 10, 100 kHz and 1 MHz), with temperature were made.  相似文献   

19.
Various compositions of nano-sized (NiMoO4)x-doped Bi2Ti4O11 (x = 0.01, 0.05, 0.1) composites have been prepared by chemical solution decomposition (CSD) method using triethanolamine (TEA) as complexing agent. Ni(II) is one of reactive species on the catalyst surface and Mo(VI) ion helps to compensate the charge of the lattice. The photocatalysts based on the above compositions have been tested for photobleaching of methyl orange (MO) solution under Hg-lamp. The prepared nanopowders are characterized by XRD, EDAX, UV–vis spectra, specific surface area (BET), zeta potential, ESR and HRTEM analyses. The average particle size of nickel molybdate-doped bismuth titanate lies around 30 ± 2 nm measured from TEM. Result shows nickel molybdate-doped bismuth titanate (NiMoO4)x(Bi2Ti4O11)1−x (NMxBT1−x; x = 0.01) composite is found to be more photoactive compared all the compositions studied except degussa P25 titania.  相似文献   

20.
Recently, doped hexagonal BaTiO3 (6h-BaTiO3) ceramics have been reported as potential candidates used in microwave dielectric resonators. However, similar to other common microwave ceramics, doped 6h-BaTiO3 ceramics require a high sintering temperature, greater than 1300 °C. In this study, the effect of sintering aids, including Bi2O3, B2O3, BaSiO3, Li2CO3, CuO, V2O5, 5ZnO·2B2O3, and 5ZnO·2SiO2, on the densification, microstructural evolution, and microwave properties of the 6h-Ba(Ti0.85Mn0.15)O3 ceramics was examined. Results indicate that among the fluxes studied, Bi2O3, B2O3, and Li2CO3 could effectively reduce the sintering temperature of 6h-Ba(Ti0.85Mn0.15)O3 ceramics through liquid phase sintering, while retaining the hexagonal structure and the microwave dielectric properties. The best results were obtained for the 6h-Ba(Ti0.85Mn0.15)O3 with the additions of 5 wt% Bi2O3 sintered at 900 °C (r: 54.7, Qfr: 1323, and τf:183.3 ppm/°C), 10 wt% B2O3 sintered at 1100 °C (r: 54.4, Qfr: 3448, and τf: 254.5 ppm/°C), and 5 wt% Li2CO3 sintered at 950 °C (r: 43.7, Qfr: 2501, and τf: −29.8 ppm/°C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号