首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Carbon Capture and Storage (CCS) is the critical enabling technology that would reduce CO2 emissions significantly while also allowing fossil fuels to meet the world’s pressing energy needs. The International Energy Agency analysis shows that although the developed world must lead the CCS effort in the next decade, there is an urgent need to spread CCS to the developing world. Given technologies for reducing GHG emissions originate mainly in developed countries, technology transfer, as an important feature emphasized by both the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, therefore has a key role to play in bridging a gap between developed and developing countries. The main objective of this paper is to explore potential policies and schemes promoting the transfer of CCS technologies to developing countries. First, it reviews the global CCS status, analyzes the significant gap of CCS in developed and developing countries, and investigates stakeholder perceptions of diffusing CCS to China, which is a major developing country and a significant potential candidate for large-scale CCS deployment; then the authors make an attempt to understand technology transfer including its benefits, barriers, and definition. The UNFCCC explicitly commits the developed (Annex I) countries to provide financial and technical support to developing countries under favorable terms. The authors argue that the ultimate goal of technology transfer should not only be limited to apply CCS in developing countries, but also to enhance their endogenous capabilities, which will enable future innovation and ensure long-term adoption of low-carbon technologies. As a result, the authors propose a four-pronged approach to the transfer of CCS technologies, which involves physical transfer of explicit technologies, a financial mechanism, endogenous capacity building, and a monitoring mechanism. Concrete enhanced actions to promote CCS technology transfer are also proposed. The four-pronged approach and related enhanced actions proposed in this paper are also applicable to other low-carbon technology transfer.  相似文献   

2.
Coal is the abundant domestic energy resource in India and is projected to remain so in future under a business-as-usual scenario. Using domestic coal mitigates national energy security risks. However coal use exacerbates global climate change. Under a strict climate change regime, coal use is projected to decline in future. However this would increase imports of energy sources like natural gas (NG) and nuclear and consequent energy security risks for India. The paper shows that carbon dioxide (CO2) capture and storage (CCS) can mitigate CO2 emissions from coal-based large point source (LPS) clusters and therefore would play a key role in mitigating both energy security risks for India and global climate change risks. This paper estimates future CO2 emission projections from LPS in India, identifies the potential CO2 storage types at aggregate level and matches the two into the future using Asia-Pacific Integrated Model (AIM/Local model) with a Geographical Information System (GIS) interface. The paper argues that clustering LPS that are close to potential storage sites could provide reasonable economic opportunities for CCS in future if storage sites of different types are further explored and found to have adequate capacity. The paper also indicates possible LPS locations to utilize CCS opportunities economically in future, especially since India is projected to add over 220,000 MW of thermal power generation capacity by 2030.  相似文献   

3.
二氧化碳封存技术相关国际法规与政策的回顾与分析   总被引:3,自引:0,他引:3  
二氧化碳捕集与封存技术(CCS)是未来减缓温室气体排放的一项重要技术,在全球范围内,CCS的示范和推广都受到各方面的重视。然而对于CCS技术的应用,特别是二氧化碳的运输与封存,缺乏明确的监管监测相关法律法规将会成为严重的阻碍。欧盟一直积极推进CCS技术的发展,同时也具有相对丰富的相关监管、激励和补贴政策措施。本文对与CCS技术相关的国际法律框架以及欧盟相关政策进行了系统的梳理,并着重分析了不同法律法规对CCS实施各方面的影响。在此基础上,总结了国际上现有法律法规的不足,以期为我国的相关法规体系建设提供参考。  相似文献   

4.
To explore public awareness of carbon capture and storage (CCS), attitudes towards the use of CCS and the determinants of CCS acceptance in China, a study was conducted in July 2009 based on face-to-face interviews with participants across the country. The result showed that the awareness of CCS was low among the surveyed public in China, compared to other clean energy technologies. Respondents indicated a slightly supportive attitude towards the use of CCS as an alternative technology to CO2 emission reductions. The regression model revealed that in addition to CCS knowledge, respondents’ understanding of the characteristics of CCS, such as the maturity of the technology, risks, capability of CO2 emission reductions, and CCS policy were all significant factors in predicting the acceptance of CCS. The findings suggest that integrating public education and communication into CCS development policy would be an effective strategy to overcome the barrier of low public acceptance.  相似文献   

5.
碳捕捉与封存技术浅论   总被引:1,自引:0,他引:1  
全球变暖已成为国际关注的问题,以全球气温变暖为背景介绍一种新的节能减排技术——二氧化碳捕捉与封存技术(CSS技术)。CCS技术是实现温室气体减排的重要途径之一,具有良好的发展前景,备受发达国家的重视和发展中国家的关注。论述有关二氧化碳捕捉与封存技术各个环节的进展和存在的问题,简要介绍了碳捕捉方面的新技术和CSS的工程应用。  相似文献   

6.
This paper examines the volumes of oil that can and cannot be used up to 2035 during the transition to a low-carbon global energy system using the global energy systems model, TIAM-UCL and the ‘Bottom up Economic and Geological Oil field production model’ (BUEGO). Globally in a scenario allowing the widespread adoption of carbon capture and storage (CCS) nearly 500 billion barrels of existing 2P oil reserves must remain unused by 2035. In a scenario where CCS is unavailable this increases to around 600 billion barrels. Besides reserves, arctic oil and light tight oil play only minor roles in a scenario with CCS and essentially no role when CCS is not available. On a global scale, 40% of those resources yet to be found in deepwater regions must remain undeveloped, rising to 55% if CCS cannot be deployed. The widespread development of unconventional oil resources is also shown to be incompatible with a decarbonised energy system even with a total and rapid decarbonisation of energetic inputs. The work thus demonstrates the extent to which current energy policies encouraging the unabated exploration for, and exploitation of, all oil resources are incommensurate with the achievement of a low-carbon energy system.  相似文献   

7.
We investigate the economics of coal-to-liquid (CTL) conversion, a polygeneration technology that produces liquid fuels, chemicals, and electricity by coal gasification and Fischer–Tropsch process. CTL is more expensive than extant technologies when producing the same bundle of output. In addition, the significant carbon footprint of CTL may raise environmental concerns. However, as petroleum prices rise, this technology becomes more attractive especially in coal-abundant countries such as the U.S. and China. Furthermore, including a carbon capture and storage (CCS) option could greatly reduce its CO2 emissions at an added cost. To assess the prospects for CTL, we incorporate the engineering data for CTL from the U.S. Department of Energy (DOE) into the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the global economy. Based on DOE’s plant design that focuses mainly on liquid fuels production, we find that without climate policy, CTL has the potential to account for up to a third of the global liquid fuels supply by 2050 and at that level would supply about 4.6% of global electricity demand. A tight global climate policy, on the other hand, severely limits the potential role of the CTL even with the CCS option, especially if low-carbon biofuels are available. Under such a policy, world demand for petroleum products is greatly reduced, depletion of conventional petroleum is slowed, and so the price increase in crude oil is less, making CTL much less competitive.  相似文献   

8.
This paper establishes a carbon capture and storage (CCS) investment evaluation model based on real options theory considering uncertainties from the existing thermal power generating cost, carbon price, thermal power with CCS generating cost, and investment in CCS technology deployment. The model aims to evaluate the value of the cost saving effect and amount of CO2 emission reduction through investing in newly-built thermal power with CCS technology to replace existing thermal power in a given period from the perspective of power generation enterprises. The model is solved by the Least Squares Monte Carlo (LSM) method. Since the model could be used as a policy analysis tool, China is taken as a case study to evaluate the effects of regulations on CCS investment through scenario analysis. The findings show that the current investment risk of CCS is high, climate policy having the greatest impact on CCS development. Thus, there is an important trade off for policy makers between reducing greenhouse gas emissions and protecting the interests of power generation enterprises. The research presented would be useful for CCS technology evaluation and related policy-making.  相似文献   

9.
Latest estimates suggest that widespread deployment of carbon capture and storage (CCS) could account for up to one-fifth of the needed global reduction in CO2 emissions by 2050. Governments are attempting to stimulate investments in CCS technology both directly through subsidizing demonstration projects, and indirectly through developing price incentives in carbon markets. Yet, corporate decision-makers are finding CCS investments challenging. Common explanations for delay in corporate CCS investments include operational concerns such as the high cost of capture technologies, technological uncertainties in integrated CCS systems and underdeveloped regulatory and liability regimes. In this paper, we place corporate CCS adoption decisions within a technology strategy perspective. We diagnose four underlying characteristics of the strategic CCS technology adoption decision that present unusual challenges for decision-makers: such investments are precautionary, sustaining, cumulative and situated. Understanding CCS as a corporate technology strategy challenge can help us move beyond the usual list of operational barriers to CCS and make public policy recommendations to help overcome them.  相似文献   

10.
我国钢铁与水泥行业利用CCS技术市场潜力分析   总被引:1,自引:0,他引:1  
刘虹  姜克隽 《中国能源》2010,32(2):34-37
减少温室气体排放是全球发展大趋势,CCS技术被认为是未来控制CO2排放的重要技术之一。本文介绍了我国钢铁和水泥行业能源消费特点,重点对我国未来20年钢铁和水泥行业CO2排放及运用CCS技术的潜力进行了初步分析,得出钢铁和水泥行业运用CCS技术可捕获CO2的潜力分别为5亿t和3~4亿t左右。  相似文献   

11.
二氧化碳捕获与封存技术进展及存在的问题分析   总被引:6,自引:1,他引:5  
李雪静  乔明 《中外能源》2008,13(5):104-107
论述了国内外二氧化碳捕获与封存(CCS)技术的进展,分析了CCS技术发展存在的问题和潜在风险。CCS技术是最具发展潜力的大规模二氧化碳减排技术,世界上许多国家和公司都开展了相关的研究探索与实践工作。预计随着该技术的逐渐成熟,在进一步降低成本、解决可能出现的泄露、公众认知不够等风险与障碍后,应用前景将极为广阔。今后,CCS技术的发展应更重视国际间合作,该技术的应用,可以减缓全球气侯变暖趋势。  相似文献   

12.
Carbon capture and storage (CCS) is the only technology available to mitigate greenhouse gas (GHG) emissions from large-scale fossil fuel usage. U.S. and China are the world’s largest GHG emitters. Collaboration between the two nations, therefore, offers the greatest opportunity for achieving meaningful reductions in global GHG emissions. Two countries’ current cooperation on CCS through Clean Energy Research Center based on the U.S.–China Strategic Forum on Clean Energy Cooperation mechanism provides an important initial step towards even closer and stronger cooperation in the future. In this paper, we justify such possibility by discourse on the seemly different but complementary social–political context in two countries including political system, government structure, economic policy, national innovation system, energy strategy, and energy market structure. We further address the key elements of future cooperation model by carefully considering the principle of equality and mutual beneficiary, the role of two countries in the whole value chain according to their comparative advantages, and the scale and mechanism of the funding. A milestone for the cooperation until 2030 is drafted and priority areas for both countries in the cooperation are identified. Such cooperation will provide the imperative leadership for global climate change and speed up the global CCS deployment.  相似文献   

13.
During 2006, a survey was conducted of European energy stakeholders (industry, government, environmental non-governmental organizations (NGOs), researchers and academicians and parliamentarians). A total of 512 responses was received from 28 countries as follows: industry (28%), research (34%), government (13%), NGOs (5%) and parliamentarians (4%). Three-quarters of the sample thought that widespread use of CO2 capture and storage (CCS) was ‘definitely’ or ‘probably necessary’ to achieve deep reductions in CO2 emissions between now and 2050 in their own country. Only one in eight considered that CCS was ‘probably’ or ‘definitely not necessary’. For a range of 12 identified risks, 20–40% thought that they would be ‘moderate’ or ‘very serious’, whilst 60–80% thought that there would be no risks or that the risks would be ‘minimal’. A particular risk identified by nearly half the sample is the additional use of fossil fuels due to the ‘energy penalty’ incurred by CCS. Further concerns are that development of CCS would detract from investment in renewable energy technologies. Half of the respondents thought that incentives for CCS should be set either at the same level as those for renewables or at a higher level. Environmental NGOs were consistently less enthusiastic about CCS than the energy industry.  相似文献   

14.
Today, almost 70% of the electricity is produced from fossil fuels and power generation accounts for over 40% of global CO2 emissions. If the targets to reduce climate change are to be met, substantial reductions in emissions are necessary. Compared to other sectors emission reductions in the power sector are relatively easy to achieve because it consists mainly of point-sources. Carbon Capture and Storage (CCS) and the use of low-carbon alternative energy sources are the two categories of options to reduce CO2 emissions. However, for both options additional infrastructure and equipment is needed. This article compares CO2 emissions and metal requirements of different low-carbon power generation technologies on the basis of Life Cycle Assessment. We analyze the most critical output (CO2) and the most critical input (metals) in the same methodological framework. CO2 emissions and metal requirements are compared with annual global emissions and annual production for different metals. It was found that all technologies are very effective in reducing CO2 emissions. However, CCS and especially non-fossil technologies are substantially more metal intensive than existing power generation. A transition to a low-carbon based power generation would require a substantial upscaling of current mining of several metals.  相似文献   

15.
碳捕集与封存技术的现状与未来   总被引:6,自引:0,他引:6  
全球气候变暖问题已经越来越严重,碳捕集与封存(CCS)技术被看作是最具发展前景的解决方案之一,随着研究的不断深入,CCS技术成本将进一步降低。碳捕集工艺按操作时间可分为燃烧前捕集、富氧燃烧捕集和燃烧后捕集,其中最有发展前景的是富氧燃烧捕集。CO2-EOR技术虽然不是直接针对性地封存二氧化碳,但其不仅可以解决二氧化碳的封存问题,还能提高油田采收率,近年来得到广泛应用。我国在CCS技术的研究上进行了大量工作,CCS技术已被列入"973计划"和"863计划",北京高碑店热电厂二氧化碳捕集示范工程受到国内外的关注。虽然CCS技术取得了长足的进步,但仍面临着很多问题,如二氧化碳泄漏问题、技术难点、建设和运行成本高昂等。CCS技术项目投资较大,如果没有政府在立法和税收机制上的激励与优惠措施,很难真正进入商业化应用阶段。好在种种迹象表明,随着全球气候问题的加剧,各国政府越来越重视CCS技术的研发和利用。  相似文献   

16.
Carbon Capture and Storage (CCS) is receiving much attention and is being promoted as an important low-carbon technology. This paper communicates key insights and conclusions from a larger study that conducted review work, policy analysis, and interviews with actors in the global CCS community (Varnäs et al., 2012). No judgment is made of the desirability of choosing CCS as a low carbon technology option, but if this technology is indeed pursued, four challenges are found to be 10 times greater than often recognized. These are; (i) a tenfold up-scaling in size (MW) from pilot plants to that of commercial demonstration, (ii) a tenfold increase in number of large scale demonstration plants actually being constructed, (iii) a tenfold increase in available annual funding over the coming 40 years and, (iv) a tenfold increase in the price put on carbon dioxide emissions. It is clear that the current development path will not fulfil expectations of CCS being commercially available at the end of this decade, nor will CCS be widely applied in time for significant contributions to needed CO2 emission reductions. CCS will only be developed if policymakers continue to favour coal based power generation while simultaneously developing stringent climate policy.  相似文献   

17.
A greenhouse gas emission trading system is considered an important policy measure for the deployment of CCS at large scale. However, more insights are needed whether such a trading system leads to a sufficient high CO2 price and stable investment environment for CCS deployment. To gain more insights, we combined WorldScan, an applied general equilibrium model for global policy analysis, and MARKAL-NL-UU, a techno-economic energy bottom-up model of the Dutch power generation sector and CO2 intensive industry. WorldScan results show that in 2020, CO2 prices may vary between 20 €/tCO2 in a Grand Coalition scenario, in which all countries accept greenhouse gas targets from 2020, to 47 €/tCO2 in an Impasse scenario, in which EU-27 continues its one-sided emission trading system without the possibility to use the Clean Development Mechanism. MARKAL-NL-UU model results show that an emission trading system in combination with uncertainty does not advance the application of CCS in an early stage, the rates at which different CO2 abatement technologies (including CCS) develop are less crucial for introduction of CCS than the CO2 price development, and the combination of biomass (co-)firing and CCS seems an important option to realise deep CO2 emission reductions.  相似文献   

18.
This paper combines an existing projection of the development of electricity production with a technology-specific environmental assessment. The combination of these two approaches, which so far have only been performed separately, allows a discussion about environmental effects of carbon capture and storage (CCS) implementation strategies on a national level. The results identify the future role of lignite and hard coal in German power production. The implementation of CCS technology leads to a considerable loss of efficiency. Due to CCS, about 50 million t of lignite will be additionally required in 2030 in comparison to the reference case without CCS in 2010. Increasing demand, the replacement of old plants and the compensation of efficiency losses lead to highly ambitious expansion rates. In the case of CCS implementation, the global warming potential (GWP) can be reduced by up to 70%. However, other environmental impacts increase in part considerably. Compliance with national ceilings for NOx emissions can only be reached by compensation measures in other sectors. The results of the environmental assessment demonstrate the significant role of the coal composition, coal origin and the required transport. CO2 pipeline transport and CO2 storage make a fairly minor contribution to the overall environmental impact.  相似文献   

19.
李桂菊  张军  季路成 《中外能源》2009,14(5):96-100
美国能源部2003年提出的“未来发电”项目(FutureGen)是全球最引人注目的煤炭洁净发电示范计划之一,然而2008年年初,美国能源部对该项目内容和目标进行了重组。根据最新资料总结了项目重组情况,分析认为,项目重组原因除美国官方公布的成本和政策压力以外,主要是基于美国政府对于未来煤炭在能源结构中主导地位的预期、雄厚的IGCC技术基础和潜力以及全球IGCC项目发展形势所驱动,其目的是使美国IGCC+CCS技术占领并垄断市场。同时针对我国发展IGCC技术提出了建议。  相似文献   

20.
At present carbon capture and storage (CCS) is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. To draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development, we have analyzed the development of the US nuclear-power industry, the US SO2-scrubber industry, and the global liquefied natural gas (LNG) industry. Through analyzing the development of the analogous industries we arrive at three principal observations. First, government played a decisive role in the development of all of these analogous technologies. Second, diffusion of these technologies beyond the early demonstration and niche projects hinged on the credibility of incentives for industry to invest in commercial-scale projects. Third, the conventional wisdom that experience with technologies inevitably reduces costs does not necessarily hold. Risky and capital-intensive technologies may be particularly vulnerable to diffusion without accompanying reductions in cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号