首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Ensembles of classifiers are among the best performing classifiers available in many data mining applications, including the mining of data streams. Rather than training one classifier, multiple classifiers are trained, and their predictions are combined according to a given voting schedule. An important prerequisite for ensembles to be successful is that the individual models are diverse. One way to vastly increase the diversity among the models is to build an heterogeneous ensemble, comprised of fundamentally different model types. However, most ensembles developed specifically for the dynamic data stream setting rely on only one type of base-level classifier, most often Hoeffding Trees. We study the use of heterogeneous ensembles for data streams. We introduce the Online Performance Estimation framework, which dynamically weights the votes of individual classifiers in an ensemble. Using an internal evaluation on recent training data, it measures how well ensemble members performed on this and dynamically updates their weights. Experiments over a wide range of data streams show performance that is competitive with state of the art ensemble techniques, including Online Bagging and Leveraging Bagging, while being significantly faster. All experimental results from this work are easily reproducible and publicly available online.  相似文献   

2.
Incremental learning has been used extensively for data stream classification. Most attention on the data stream classification paid on non-evolutionary methods. In this paper, we introduce new incremental learning algorithms based on harmony search. We first propose a new classification algorithm for the classification of batch data called harmony-based classifier and then give its incremental version for classification of data streams called incremental harmony-based classifier. Finally, we improve it to reduce its computational overhead in absence of drifts and increase its robustness in presence of noise. This improved version is called improved incremental harmony-based classifier. The proposed methods are evaluated on some real world and synthetic data sets. Experimental results show that the proposed batch classifier outperforms some batch classifiers and also the proposed incremental methods can effectively address the issues usually encountered in the data stream environments. Improved incremental harmony-based classifier has significantly better speed and accuracy on capturing concept drifts than the non-incremental harmony based method and its accuracy is comparable to non-evolutionary algorithms. The experimental results also show the robustness of improved incremental harmony-based classifier.  相似文献   

3.
Abstract

The rapid growth of the information technology accelerates organizations to generate vast volumes of high-velocity data streams. The concept drift is a crucial issue, and discovering the sequential patterns over data streams are more challenging. The ensemble classifiers incrementally learn the data for providing quick reaction to the concept drifts. The ensemble classifiers have to process both the gradual and sudden concept drifts that happen in the real-time data streams. Thus, a novel ensemble classifier is essential that significantly reacting to various types of concept drifts quickly and maintaining the classification accuracy. This work proposes the stream data mining on the fly using an adaptive online learning rule (SOAR) model to handle both the gradual and sudden pattern changes and improves mining accuracy. Adding the number of classifiers fails because the ensemble tends to include redundant classifiers instead of high-quality ones. Thus, the SOAR includes different diversity levels of classifiers in the ensemble to provide fast recovery from both the concept drifts. Moreover, the SOAR synthesizes the essential features of the block and online-based ensemble and updates the weight of each classifier, regarding its quality. It facilitates adaptive windowing to handle both gradual and sudden concept drifts. To reduce the computational cost and analyze the data stream quickly, the SOAR caches the occurred primitive patterns into a bitmap with the internal relationship. Finally, the experimental results show that the SOAR performs better classification and accuracy over data streams.  相似文献   

4.
在开放环境下,数据流具有数据高速生成、数据量无限和概念漂移等特性.在数据流分类任务中,利用人工标注产生大量训练数据的方式昂贵且不切实际.包含少量有标记样本和大量无标记样本且还带概念漂移的数据流给机器学习带来了极大挑战.然而,现有研究主要关注有监督的数据流分类,针对带概念漂移的数据流的半监督分类的研究尚未引起足够的重视....  相似文献   

5.
现有概念漂移处理算法在检测到概念漂移发生后,通常需要在新到概念上重新训练分类器,同时“遗忘”以往训练的分类器。在概念漂移发生初期,由于能够获取到的属于新到概念的样本较少,导致新建的分类器在短时间内无法得到充分训练,分类性能通常较差。进一步,现有的基于在线迁移学习的数据流分类算法仅能使用单个分类器的知识辅助新到概念进行学习,在历史概念与新到概念相似性较差时,分类模型的分类准确率不理想。针对以上问题,文中提出一种能够利用多个历史分类器知识的数据流分类算法——CMOL。CMOL算法采取分类器权重动态调节机制,根据分类器的权重对分类器池进行更新,使得分类器池能够尽可能地包含更多的概念。实验表明,相较于其他相关算法,CMOL算法能够在概念漂移发生时更快地适应新到概念,显示出更高的分类准确率。  相似文献   

6.
李燕  张玉红  胡学钢 《计算机科学》2010,37(12):138-142
具有概念漂移的含噪数据流的分类问题成为数据流挖掘领域研究的热点之一。提出了一种基于C4. 5和Naive I3ayes混合模型的数据流分类算法CDSMM。它以C4.5作为基分类器,采用朴素贝叶斯分类器过滤噪音,同时引入假设检验中的u检验方法检测概念漂移,动态更新模型。实验结果表明,CDSMM算法在处理带有噪音的概念漂移数据流时具有比同类算法更好的分类正确率。  相似文献   

7.
基于主要特征抽取的重现概念漂移处理算法   总被引:1,自引:1,他引:0  
针对重现概念漂移检测中的概念表征和分类器选择问题,提出了一种适用于含重现概念漂移的数据流分类的算法——基于主要特征抽取的概念聚类和预测算法(Conceptual clustering and prediction through main feature extraction, MFCCP)。MFCCP通过计算不同批次样本的主要特征及影响因子的差异度以识别重复出现的概念,为每个概念维持且及时更新一个分类器,并依据Hoeffding不等式选择最合适的分类器对当前样本集实施分类,以 提高对概念漂移的反应能力。在3个数据集上的实验表明:MFCCP在含重现概念漂移的数据集上的分类准确率,对概念漂移的反应能力及对概念漂移检测的准确率均明显优于其他4种 对比算法,且MFCCP也适用于对不含重现概念漂移的数据流进行分类。  相似文献   

8.
Classifiers deployed in the real world operate in a dynamic environment, where the data distribution can change over time. These changes, referred to as concept drift, can cause the predictive performance of the classifier to drop over time, thereby making it obsolete. To be of any real use, these classifiers need to detect drifts and be able to adapt to them, over time. Detecting drifts has traditionally been approached as a supervised task, with labeled data constantly being used for validating the learned model. Although effective in detecting drifts, these techniques are impractical, as labeling is a difficult, costly and time consuming activity. On the other hand, unsupervised change detection techniques are unreliable, as they produce a large number of false alarms. The inefficacy of the unsupervised techniques stems from the exclusion of the characteristics of the learned classifier, from the detection process. In this paper, we propose the Margin Density Drift Detection (MD3) algorithm, which tracks the number of samples in the uncertainty region of a classifier, as a metric to detect drift. The MD3 algorithm is a distribution independent, application independent, model independent, unsupervised and incremental algorithm for reliably detecting drifts from data streams. Experimental evaluation on 6 drift induced datasets and 4 additional datasets from the cybersecurity domain demonstrates that the MD3 approach can reliably detect drifts, with significantly fewer false alarms compared to unsupervised feature based drift detectors. At the same time, it produces performance comparable to that of a fully labeled drift detector. The reduced false alarms enables the signaling of drifts only when they are most likely to affect classification performance. As such, the MD3 approach leads to a detection scheme which is credible, label efficient and general in its applicability.  相似文献   

9.
Tracking the best hyperplane with a simple budget Perceptron   总被引:1,自引:0,他引:1  
Shifting bounds for on-line classification algorithms ensure good performance on any sequence of examples that is well predicted by a sequence of changing classifiers. When proving shifting bounds for kernel-based classifiers, one also faces the problem of storing a number of support vectors that can grow unboundedly, unless an eviction policy is used to keep this number under control. In this paper, we show that shifting and on-line learning on a budget can be combined surprisingly well. First, we introduce and analyze a shifting Perceptron algorithm achieving the best known shifting bounds while using an unlimited budget. Second, we show that by applying to the Perceptron algorithm the simplest possible eviction policy, which discards a random support vector each time a new one comes in, we achieve a shifting bound close to the one we obtained with no budget restrictions. More importantly, we show that our randomized algorithm strikes the optimal trade-off $U = \Theta(\sqrt{B})$ between budget B and norm U of the largest classifier in the comparison sequence. Experiments are presented comparing several linear-threshold algorithms on chronologically-ordered textual datasets. These experiments support our theoretical findings in that they show to what extent randomized budget algorithms are more robust than deterministic ones when learning shifting target data streams.  相似文献   

10.
流数据分类中的概念漂移问题研究   总被引:3,自引:0,他引:3  
传统的流数据分类算法基于滑动窗口来优化现有分类器或建立多个分类器来跟踪概念的漂移过程,而不能根据概念漂移的强弱程度自适应地进行分类.在结合当前主流的CVFDT和集成分类器算法的基础之上,提出一种新型流数据分类算法:SADT算法.算法动态地判断概念漂移的发生,自动决定是优化还是重建分类器,适用于不同类型的数据的分类.通过分析和实验论证,该算法在处理概念漂移时具有更好的适应性.  相似文献   

11.
The problem addressed in this study concerns mining data streams with concept drift. The goal of the article is to propose and validate a new approach to mining data streams with concept-drift using the ensemble classifier constructed from the one-class base classifiers. It is assumed that base classifiers of the proposed ensemble are induced from incoming chunks of the data stream. Each chunk consists of prototypes and information about whether the class prediction of these instances, carried-out at earlier steps, has been correct. Each data chunk can be updated by using the instance selection technique when new data arrive. When a new data chunk is formed, the ensemble model is also updated on the basis of weights assigned to each one-class classifier. In this article, two well-known instance-based learning algorithms—the CNN and the ENN—have been adopted to solve the one-class classification problems and, consequently, update the proposed classifier ensemble. The proposed approaches have been validated experimentally, and the computational experiment results are shown and discussed. The experiment results prove that the proposed approach using the ensemble classifier constructed from the one-class base classifiers with instance selection for chunk updating can outperform well-known approaches for data streams with concept drift.  相似文献   

12.
基于多分类器的数据流中的概念漂移挖掘   总被引:4,自引:0,他引:4  
数据流中概念漂移的检测是当前数据挖掘领域的重要研究分支, 近年来得到了广泛的关注. 本文提出了一种称为 M_ID4 的数据流挖掘算法. 它是在大容量数据流挖掘中, 通过尽量少的训练样本来实现概念漂移检测的快速方法. 利用多分类器综合技术, M_ID4 实现了数据流中概念漂移的增量式检测和挖掘. 实验结果表明, M_ID4 算法在处理数据流的概念漂移上表现出比已有同类算法更高的精确度和适应性.  相似文献   

13.
一种挖掘概念漂移数据流的选择性集成算法   总被引:1,自引:0,他引:1  
提出一种挖掘概念漂移数据流的选择性集成学习算法。该算法根据各基分类器在验证集上的输出结果向量方向与参考向量方向之间的偏离程度,选择参与集成的基分类器。分别在具有突发性和渐进性概念漂移的人造数据集SEA和Hyperplane上进行实验分析。实验结果表明,这种基分类器选择方法大幅度提高了集成算法在处理概念漂移数据流时的分类准确性。使用error-ambiguity分解对算法构建的naive Bayes集成在解决分类问题时的性能进行了分析。实验结果表明,算法成功的主要原因是它能显著降低平均泛化误差。  相似文献   

14.
《Information Fusion》2008,9(1):56-68
In the real world concepts are often not stable but change with time. A typical example of this in the biomedical context is antibiotic resistance, where pathogen sensitivity may change over time as new pathogen strains develop resistance to antibiotics that were previously effective. This problem, known as concept drift, complicates the task of learning a model from data and requires special approaches, different from commonly used techniques that treat arriving instances as equally important contributors to the final concept. The underlying data distribution may change as well, making previously built models useless. This is known as virtual concept drift. Both types of concept drifts make regular updates of the model necessary. Among the most popular and effective approaches to handle concept drift is ensemble learning, where a set of models built over different time periods is maintained and the best model is selected or the predictions of models are combined, usually according to their expertise level regarding the current concept. In this paper we propose the use of an ensemble integration technique that would help to better handle concept drift at an instance level. In dynamic integration of classifiers, each base classifier is given a weight proportional to its local accuracy with regard to the instance tested, and the best base classifier is selected, or the classifiers are integrated using weighted voting. Our experiments with synthetic data sets simulating abrupt and gradual concept drifts and with a real-world antibiotic resistance data set demonstrate that dynamic integration of classifiers built over small time intervals or fixed-sized data blocks can be significantly better than majority voting and weighted voting, which are currently the most commonly used integration techniques for handling concept drift with ensembles.  相似文献   

15.
Traditional approaches for text data stream classification usually require the manual labeling of a number of documents, which is an expensive and time consuming process. In this paper, to overcome this limitation, we propose to classify text streams by keywords without labeled documents so as to reduce the burden of labeling manually. We build our base text classifiers with the help of keywords and unlabeled documents to classify text streams, and utilize classifier ensemble algorithms to cope with concept drifting in text data streams. Experimental results demonstrate that the proposed method can build good classifiers by keywords without manual labeling, and when the ensemble based algorithm is used, the concept drift in the streams can be well detected and adapted, which performs better than the single window algorithm.  相似文献   

16.
自适应随机森林分类器在每个基础分类器上分别设置了警告探测器和漂移探测器,实例训练时常常会同时触发多个警告探测器,引起多棵背景树同步训练,使得运行所需的内存大、时间长。针对此问题,提出了一种改进的自适应随机森林集成分类算法,将概念漂移探测器设置在集成学习器端,移除各基础树端的漂移探测器,并根据集成器预测准确率确定需要训练的背景树的数量。用改进后的算法对较平衡的数据流进行分类,在保证分类性能的前提下,与改进前的算法相比,运行时间有所降低,消耗内存有所减少,能更快适应数据流中出现的概念漂移。  相似文献   

17.
周胜  刘三民 《计算机工程》2020,46(5):139-143,149
为解决数据流分类中的概念漂移和噪声问题,提出一种基于样本确定性的多源迁移学习方法。该方法存储多源领域上由训练得到的分类器,求出各源领域分类器对目标领域数据块中每个样本的类别后验概率和样本确定性值。在此基础上,将样本确定性值满足当前阈值限制的源领域分类器与目标领域分类器进行在线集成,从而将多个源领域的知识迁移到目标领域。实验结果表明,该方法能够有效消除噪声数据流给不确定分类器带来的不利影响,与基于准确率选择集成的多源迁移学习方法相比,具有更高的分类准确率和抗噪稳定性。  相似文献   

18.
复杂数据流中所存在的概念漂移及不平衡问题降低了分类器的性能。传统的批量学习算法需要考虑内存以及运行时间等因素,在快速到达的海量数据流中性能并不突出,并且其中还包含着大量的漂移及类失衡现象,利用在线集成算法处理复杂数据流问题已经成为数据挖掘领域重要的研究课题。从集成策略的角度对bagging、boosting、stacking集成方法的在线版本进行了介绍与总结,并对比了不同模型之间的性能。首次对复杂数据流的在线集成分类算法进行了详细的总结与分析,从主动检测和被动自适应两个方面对概念漂移数据流检测与分类算法进行了介绍,从数据预处理和代价敏感两个方面介绍不平衡数据流,并分析了代表性算法的时空效率,之后对使用相同数据集的算法性能进行了对比。最后,针对复杂数据流在线集成分类研究领域的挑战提出了下一步研究方向。  相似文献   

19.
Email spam is one of the biggest threats to today’s Internet. To deal with this threat, there are long-established measures like supervised anti-spam filters. In this paper, we report the development and evaluation of sentinel—an anti-spam filter based on natural language and stylometry attributes. The performance of the filter is evaluated not only on non-personalized emails (i.e., emails collected randomly) but also on personalized emails (i.e., emails collected from particular individuals). Among the non-personalized datasets are CSDMC2010, SpamAssassin, and LingSpam, while the Enron-Spam collection comprises personalized emails. The proposed filter extracts natural language attributes from email text that are closely related to writer stylometry and generate classifiers using multiple learning algorithms. Experimental outcomes show that classifiers generated by meta-learning algorithms such as adaboostm1 and bagging are the best, performing equally well and surpassing the performance of a number of filters proposed in previous studies, while a random forest generated classifier is a close second. On the other hand, the performance of classifiers using support vector machine and Naïve Bayes is not satisfactory. In addition, we find much improved results on personalized emails and mixed results on non-personalized emails.  相似文献   

20.
Many applications track streaming data for actionable alerts, which may include, for example, network intrusions, transaction frauds, bio-surveilence abnormalities, and so forth. Some stream classification models are built for this purpose. Due to concept drifts, maintaining a model's up-to-dateness has become one of the most challenging tasks in mining data streams. State-of-the-art approaches, including both the incrementally updated classifiers and the ensemble classifiers, have proved that model update is a very costly process. In this paper, we show that reducing model granularity reduces the update cost, as models of fine granularity enable us to efficiently pinpoint local components in the model that are affected by the concept drift. It also enables us to derive new model components to reflect the current data distribution, thus avoiding expensive updates on a global scale. Furthermore, those actionable alerts being monitored are usually rare occurrences. The existing stream classifiers cannot handle this problem. We address this problem and show that the low-granularity classifier handles rare events on stream data with ease. Experiments on real and synthetic data show that our approach is able to maintain good prediction accuracy at a fraction of the model updating cost of state-of-the-art approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号