首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 515 毫秒
1.
万聪聪  姜天华  余意 《硅酸盐通报》2023,(10):3518-3529
通过正交试验,研究了聚丙烯泡沫混凝土(PPFC)的基本力学性能及应力-应变本构关系。研究表明:在试验变量范围内,增加聚丙烯纤维(PP)体积掺量(0.5%、1.0%和1.5%),PPFC试件立方体抗压、轴心抗压和劈裂抗拉强度均依次降低;增大PP长度(3、6和9 mm),PPFC试件立方体抗压、轴心抗压和劈裂抗拉强度均先增大后减小;PPFC试件立方体抗压强度随粉煤灰(FA)质量掺量(40%、45%和50%)增加先增大后减小,轴心抗压强度和劈裂抗拉强度随FA掺量增加均依次减小。基于直观分析法,可得正交试验最优配合比组合为A1B2C2,即PP体积掺量为0.5%,PP长度为6 mm, FA质量掺量为45%。PPFC受压试件破坏形态均为压剪破坏,破坏裂缝主要为斜裂缝,并伴有竖向裂缝,破坏面一般为斜面破坏;劈裂受拉试件破坏形态均为劈裂破坏,破坏裂缝均为沿荷载施加方向的竖向裂缝。基于单因素变量法可得,增加PP体积掺量(0%、0.1%、0.2%、0.3%、0.4%、0.5%和0.6%),PPFC试件立方体抗压、轴心抗压和劈裂抗拉强度均先增...  相似文献   

2.
为了研究玄武岩纤维在RPC(reactive powder concrete,活性粉末混凝土)中的作用效果,以玄武岩纤维体积掺量、纤维长度、RPC水胶比和养护龄期为参数,对玄武岩纤维RPC的劈裂抗拉强度和立方体抗压强度进行了试验研究.试验结果表明:对于掺入12 mm长玄武岩纤维的RPC,最佳水胶比为0.22,最佳纤维体积掺量为0.10%,其劈拉强度较未掺纤维的RPC提高了38.53%.对于掺入6 mm长玄武岩纤维的RPC,最佳纤维体积掺量为0.05%,其劈拉强度较未掺纤维的RPC提高了27.16%.  相似文献   

3.
丁明冬  杜红秀 《硅酸盐通报》2017,36(8):2763-2767
对混杂纤维活性粉末混凝土(RPC)不同温度等级作用并烧透(试件中心内置热电偶达到目标温度)后抗压强度进行了测试,研究了钢纤维和聚丙烯掺量对RPC抗压强度的影响.结果表明,RPC混凝土的抗压强度随着作用温度的升高总体呈下降趋势,钢纤维可以有效提高RPC混凝土抗压强度,而聚丙烯纤维可以改善RPC高温后性能和抑制爆裂,混杂纤维可优势互补.基于实验结果,给出了在钢纤维体积掺量2%,同时混掺聚丙烯体积掺量0、0.1%和0.2%下的RPC平均抗压强度与受火温度的关系式.  相似文献   

4.
为研究超细钢-聚丙烯纤维对混凝土力学性能的影响,进行了9组超细钢-聚丙烯混杂纤维混凝土试件的立方体抗压强度和劈裂强度试验,分析了超细钢纤维、聚丙烯纤维体积掺量对混凝土力学性能的影响。结果表明:混杂纤维的掺入使混凝土的立方体抗压强度、劈裂强度及拉压比均有提高,混杂纤维混凝土破坏产生明显延性特征;超细钢纤维体积掺量对混凝土力学性能的影响最大,混凝土强度及拉压比随超细钢纤维掺量增加而增大;聚丙烯纤维体积掺量增加对混凝土力学性能的影响并非线性提高,混掺0.1%聚丙烯纤维和1.5%超细钢纤维的混凝土获得最佳力学性能,抗压强度提高19.42%,劈裂抗拉强度提高56.78%,拉压比提高30.16%。  相似文献   

5.
试验研究了在不同玄武岩纤维体积掺量(0%、0.1%、0.15%和0.2%)、不同高温(20℃、200℃、400℃、600℃)情况下,两种不同的纤维加入方式(水泥浆包裹纤维、直接加入)对再生粗骨料混凝土(取代率为50%)的立方体抗压、劈裂抗拉强度的影响,结果表明间接加入方式下的强度比高于直接加入方式,但是变量不同,提高的幅度不同。当温度一定时,抗压强度提高幅度随纤维掺量的增加而增加,0.2%时最大,劈裂抗拉强度提高幅度则随纤维掺量的增加而减小,0.1%时最大;当掺量一定时,抗压强度提高幅度随温度的变化呈折线趋势,20~200℃时上升,200~400℃时趋于平缓,400~600℃时再上升,对于劈裂而言,20~200℃时基本不变,200℃之后提高幅度急剧下降。  相似文献   

6.
考虑钢纤维体积率、聚丙烯纤维体积率和长径比三种因素,设计并制作了171个超高性能混凝土试块,进行立方体抗压强度、轴心抗压强度和劈裂抗拉强度试验,分析纤维特征参数对超高性能混凝土强度的影响规律.结果表明,掺入钢-聚丙烯混杂纤维后,超高性能混凝土的立方体抗压强度可提高36.3%,轴心抗压强度可提高31.9%,劈裂抗拉强度可提高539%;混杂纤维最佳配比为,钢纤维体积率1.50%、聚丙烯纤维长径比167、体积率0.10%;基于试验结果建立了考虑纤维参数的超高性能混凝土立方体抗压强度预测模型,提出了超高性能混凝土轴心抗压强度、劈裂抗拉强度与立方体抗压强度的关系式.  相似文献   

7.
对掺聚丙烯纤维的C80高强混凝土立方体试件模拟高温试验后,进行混凝土质量损失和抗压性能测试,研究分析了不同作用温度对聚丙烯纤维高强混凝土的质量损失和抗压强度的影响.结果表明,随着温度的升高,掺聚丙烯纤维高强混凝土的质量损失逐渐增加而抗压强度整体呈下降趋势,600℃高温后混凝土立方体抗压强度急剧下降,强度值仅为常温的25.05%;高温后聚丙烯纤维高强混凝土的相对质量损失和相对残余抗压强度的整体变化趋势基本相似.  相似文献   

8.
柴松华  杜红秀  阎蕊珍 《硅酸盐通报》2013,32(11):2341-2345
对掺聚丙烯纤维前后的C60高强混凝土(HSC)棱柱体试件进行了高温试验,分析了高强混凝土高温后轴心抗压强度的变化规律,以及聚丙烯纤维对高强混凝土高温后轴心抗压强度的影响.试验结果表明:高温后,高强混凝土的轴心抗压强度均有不同程度的降低;相同温度作用后,与不掺纤维的混凝土相比,掺聚丙烯纤维的高强混凝土轴心抗压强度有一定提高,且在相同掺量下,长度15 mm、直径35 μm的聚丙烯纤维对强度的贡献最大;借助X射线衍射(XRD)试验,探讨高温作用前后水泥净浆中物相结构的变化,初步揭示了高温对混凝土性能影响的机理.  相似文献   

9.
设计了聚丙烯纤维掺量为0%、0.2%、0.3%的三种C60高性能混凝土,制作成标准立方体试件,模拟高温试验,分别采用自然冷却和喷水冷却两种方式把C60HPC试件冷却至常温.测试混凝土试件的抗压强度和超声波速,分析C60HPC试件的抗压强度和超声波速随受火温度的变化及其受冷却方式的影响.结果表明:C60HPC试件的抗压强度随受火温度的升高而降低,当受火温度在200~300℃时,掺加聚丙烯纤维的C60 HPC试件抗压强度有所提高;随着受火温度的增长,C60 HPC试件的超声波速减小;喷水冷却后C60 HPC试件的抗压强度在400℃以前降低缓慢,但是在400℃以后降低速度加快;喷水冷却后C60HPC试件的抗压强度和超声波速值均小于自然冷却后C60HPC试件;聚丙烯纤维掺量为0.2%C60HPC试件的抗压强度和超声波速值均大于掺量为0%和0.3%的C60 HPC试件.  相似文献   

10.
为研究高温下玄武岩纤维增强地质聚合物混凝土(BFRGC)的动态压缩力学行为,本文制备了纤维体积掺量为0%、0.1%、0.2%、0.3%的BFRGC试件,并对其进行了不同温度(20、200、400、600、800℃)下的动态冲击试验。结果表明:BFRGC试件静态抗压强度、动态抗压强度和比能量吸收具有明显的温度强化效应和高温损伤效应,峰值应变表现出显著的温度塑化效应。BFRGC试件的静态抗压强度、动态抗压强度的温度阀值为400℃。随着温度的升高,BFRGC试件的静态抗压强度、动态抗压强度和比能量吸收均先增大后减小,峰值应变不断增大。掺加适量的玄武岩纤维可以提高常温及高温下地质聚合物混凝土的静态抗压强度和动态力学性能,且其最佳掺量为0.1%。  相似文献   

11.
本文研究了不同掺量、不同长度短切玄武岩纤维对高强灌浆料耐高温性能的影响,主要对玄武岩纤维对高强灌浆料在不同受火温度及300℃热震处理后的强度损失、体积变化和质量变化等的影响进行了评价。结果表明:玄武岩纤维能够提高灌浆料不同温度受火处理后的强度比,特别是抗折强度比,并且能够减小受火后灌浆料的收缩和质量损失。在300℃热震处理的条件下,玄武岩纤维能够提高灌浆料的抗压强度比,并且大幅度减少因热震造成的膨胀。  相似文献   

12.
超高性能混凝土立方体抗压强度尺寸效应   总被引:4,自引:0,他引:4  
苏捷  刘伟  史才军  方志 《硅酸盐学报》2021,49(2):305-311
通过5种几何尺寸、3个强度等级和4种钢纤维掺量的超高性能混凝土(UHPC)立方体试件的抗压试验,研究了强度等级和钢纤维体积掺量等对UHPC立方体抗压强度及尺寸效应的影响,结果表明:UHPC立方体试件抗压强度的尺寸效应随强度等级的增加而趋于明显,R160级UHPC基体抗压强度尺寸效应度约为R120级UHPC基体的1.72倍。钢纤维掺量对UHPC抗压强度尺寸效应有较大影响,掺入3%钢纤维UHPC立方体试件抗压强度尺寸效应度比未掺加钢纤维的试件提高了46%。提出了UHPC立方体抗压强度尺寸换算系数建议值,建立了UHPC抗压强度尺寸效应律中参数的计算公式,可用于UHPC立方体抗压强度的分析计算。  相似文献   

13.
姜宇  陈甜甜  杜红秀 《硅酸盐通报》2017,36(7):2173-2177
通过测试不同钢纤维掺量活性粉末混凝土(RPC)试件的流动度、28 d标准养护后抗压强度及抗折强度,分析不同钢纤维掺量下,RPC流动度、抗压强度、抗折强度、折压比等性能,并结合文献对比分析在不同配合比下钢纤维掺量对RPC的增强效果,综合考虑RPC流动度与力学性能得出钢纤维最优掺量为2%~3%.  相似文献   

14.
为了研究塑钢纤维轻骨料混凝土的轴心抗压强度(fc)与立方体抗压强度(fcu)的换算关系,通过432个标准棱柱体试件和标准立方体试件研究了塑钢纤维掺量、轻骨料种类和水灰比等影响因素对两种抗压强度关系的影响规律.结果表明:塑钢纤维掺量(5~13 kg/m3)、轻骨料种类和水灰比(0.32~0.4)对轴心抗压强度与立方体抗压强度比值(fc/fcu)无明显影响;经回归分析得到了fc与fcu相关性很好的线性关系方程;基于fc/fcu回归和数学统计分析,塑钢纤维轻骨料混凝土fc相对于fcu的换算系数可取为0.80.  相似文献   

15.
对掺0%和0.2%聚丙烯纤维的C60高性能混凝土进行了模拟火灾高温试验,测试了高温前后混凝土的轴心抗压强度,采用红外热成像检测技术,研究了高温后混凝土的红外热像图谱.建立了高性能混凝土红外热像平均温升与受火温度和轴心抗压强度比的关系;对常温、300 ℃、400 ℃、500 ℃高温后高性能混凝土试件进行了CT图像扫描试验,分析纤维对混凝土内部裂纹产生和扩展的影响.  相似文献   

16.
为优化水泥基复合材料的电学性能,以碳纤维(CF)和钢纤维(SF)为导电材料,通过抗压强度试验、交流阻抗测试、扫描电镜测试和升温试验,研究了碳纤维和钢纤维的体积掺量对水泥基复合材料抗压强度和电学性能的影响。结果表明,碳纤维-钢纤维水泥基复合材料的抗压强度随碳纤维掺量增大呈先增大后减小的趋势。碳纤维、钢纤维的渗滤阈值分别为0.35%和0.6%(均为体积分数),复掺碳纤维和钢纤维使水泥基复合材料的导电性能大幅增强,产生了明显的正向混杂效应,碳纤维和钢纤维体积掺量达到渗滤阈值后,继续增大纤维掺量对导电性能的提升作用不大。用ZSimp Win软件拟合得到等效电路各电路元件数值,并结合SEM照片分析了导电机制。碳纤维-钢纤维水泥基复合材料具有良好的电热性能,当输入功率为7.9 W,通电30 min、60 min、90 min后,其平均温度可达到33 ℃、43 ℃、50 ℃,通过曲线拟合得到了温度随时间变化的回归方程。  相似文献   

17.
采用热压工艺制造聚丙烯(PP)/甘蔗皮纤维复合材料,并研究其拉伸性能。研究热压温度为175℃、压力为2 MPa、时间15 min工艺条件下纤维粒径大小和质量分数对复合材料拉伸强度和拉伸弹性模量的影响。结果表明:在甘蔗皮纤维质量分数为40%条件下,复合材料拉伸性能随着粒径减小呈现先增加后减少的趋势,当纤维粒径为40~60目(0.45~0.3 mm)时材料拉伸强度最大,为8.58 MPa,此时弹性模量为2.44 GPa;在相同纤维粒径40~60目条件下,纤维质量分数为40%时PP复合材料拉伸强度最大,纤维质量分数为50%时PP复合材料拉伸弹性模量最大,达到2.65 GPa。根据实验结果,甘蔗皮纤维增强PP复合材料在纤维粒径为40~60目、质量分数在40%时综合拉伸性能最佳。  相似文献   

18.
对不同玄武岩纤维体积率混凝土进行室内高温试验,总结与分析了温度和纤维体积率对混凝土立方体抗压强度、劈裂抗拉强度和静弹性模量的影响规律。研究结果表明:玄武岩混凝土的抗压强度、抗拉强度和弹性模量均在200℃高温出现拐点,200℃高温后玄武岩纤维混凝土的力学性能均出现不同程度的降低;混凝土的力学性能随玄武岩纤维体积率的增大而呈现出先增大后减小的趋势,最优的玄武岩纤维体积率为0.15%;玄武岩再生混凝土的力学性能随再生骨料取代率的增大而减弱,再生骨料取代率不宜大于30%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号