首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 263 毫秒
1.
从对附着流和分离流的建模两方面阐述了Beddoes-Leishman动态失速模型.基于Beddoes-Leishman模型开发了动态失速数值计算程序,并将其集成到了现有的风力机气动载荷分析软件中.利用所开发的程序,计算了NACA 63-418翼型的动态失速特性,分析了平均攻角、衰减频率和马赫数的变化对动态失速特性的影响.仿真了一台1.5MW变速恒频风电机组的发电工况,结果表明,动态失速对风力机的动态气动载荷有极大影响,在进行动态载荷仿真时必须予以充分考虑.  相似文献   

2.
采用基于滑移网格模型的三维非稳态CFD方法,对NREL Phase VI风力机在偏航工况下的动态失速特性进行计算,分析旋转周期内翼型攻角和升力系数的变化,并进一步分析非稳态流动对动态失速的影响。结果表明:偏航工况时,来流风的水平分量和翼型的非稳态绕流会延缓气流分离涡的形成和失速现象的发生,伴随的动态失速现象会显著增加叶片的动态负荷;越靠近叶根动态失速特征越明显,翼型承受的非稳态升力系数最大可达静态升力系数的5倍以上,升力系数迟滞环面积也更大。计算结果能够为风力机优化设计和运行提供理论指导。  相似文献   

3.
李德顺  何婷  王清 《太阳能学报》2023,(12):207-213
采用CFD方法对风力机翼型在不同直径颗粒下的动态失速特性进行建模与数值模拟。首先,针对二维NACA 0012翼型,采用SST k-ω湍流模型对连续相与离散相耦合进行建模数值;其次,验证SST k-ω湍流模型的准确性,并对离散相模型进行可行性分析;最后,分析颗粒直径对翼型动态失速气动性能和翼型周围流场的影响,同时给出不同直径颗粒的质量浓度分布规律。研究表明:当颗粒直径小于50μm时,颗粒直径越大,升力系数变化越大,翼型前缘附近的涡量也越大,大量颗粒聚集在翼型的吸力面;当颗粒直径为50μm时,翼型运动到振荡周期的任何攻角下,升力系数都在减小,翼型前缘处的流场发生改变,涡量减小,涡强减小,大量颗粒聚集在翼型压力面,分离点后移;当颗粒直径大于50μm时,在大攻角下影响较大,小攻角下影响较小,且升力系数都在减小,翼型前缘附近的涡量随颗粒直径的增加而减小,大量颗粒聚集在翼型整个压力面上。  相似文献   

4.
基于涡尾迹方法的风力机非定常气动特性计算   总被引:2,自引:0,他引:2  
给出了一种水平轴风力机三维非定常气动特性计算方法.风力机的绕流用预定涡尾迹模型确定,并引入涡核模型和考虑粘性引起的耗散效应对模型进行修正,解决了涡尾迹方法在大叶尖速比时普遍存在的计算发散问题.通过对Leishman-Beddoes动态失速模型中动态失速判据和模拟的修正,更准确计算侧偏风时风轮叶片的非定常气动响应.将三维旋转失速延迟模型与预定涡尾迹模型和动态失速模型适当耦合,从而计算包括三维旋转效应对叶片气动载荷非定常响应的影响,提高了风力机风轮和叶片非定常气动特性计算的准确度.  相似文献   

5.
风力机振荡翼型动态失速特性的CFD研究   总被引:2,自引:0,他引:2  
为采用CFD方法研究风力机振荡翼型出现的流动动态失速现象,首先依据实验结果,对比分析了Baldwin-Lomax、Johnson-King、K-ωSST、S-A和K-ω5种紊流模型计算结果,结果表明:K-ωSST模型由于考虑到分离流动的非平衡作用,针对动态失速的计算精度较高。通过对NACA0012翼型振荡运动的流场进行计算,详细分析了振荡运动过程中翼型表面分离涡的形成、放大直至造成翼型失速以及失速区涡结构。  相似文献   

6.
通过研究尾缘气动弹片对翼型动态失速特性影响,提出一种基于气动弹片的主动控制策略,使其于大攻角时抬起,小攻角时闭合。并采用计算流体动力学方法对比分析主动式气动弹片对不同厚度翼型抑制流动分离作用的效果。结果表明:对于薄翼型,发生动态失速时,气动弹片可延缓翼型尾缘涡旋与前缘主流涡的相互作用,减小翼型升力系数骤降幅度;随翼型厚度增加,流动分离点从翼型前缘转向后缘,气动弹片可有效分割较大分离涡,减轻流动分离程度,限制分离涡发展,同时抑制尾缘伴随小涡产生,提高翼型升阻比。  相似文献   

7.
立轴风力机空气动力学性能流管模型研究   总被引:1,自引:1,他引:0  
为提高流管模型在立轴风力机空气动力学性能预报中的准确性,根据不同速比范围内立轴风力机空气动力学特性,研究分析了双盘面多流管模型的有效性和局限性,并引入动态失速模型和附加阻力系数对流管模型进行修正.算例结果表明:修正后的流管模型可以较准确地预报低速比区域内的动态失速效应和高速比区域内的第二效应,理论计算结果与实验值符合较好,能准确反映立轴风力机空气动力学性能变化规律,适用于立轴风力机气动性能设计分析.  相似文献   

8.
风力机叶片旋转产生的失速延迟效应使建立在二维流动假设基础上的动量-叶素理论(BEM)不再适用,因此需要对BEM进行修正。目前最常用的Du&Selig模型、Chaviaropoulos & Hansen模型和Snel模型对失速延迟区域的升力系数和阻力系数进行了修正。运用上述三种失速模型对UAE Phase Ⅵ风力机进行气动性能计算,将计算结果与NASA-Ames风洞实验数据进行对比,验证各失速模型的优缺点及适用范围。  相似文献   

9.
对于可进行尾缘变弯的二维翼型,研究其不同变弯形式对系统气弹特性的影响。研究基于数学建模方法,推导受控变弯翼型的气弹动力学方程,并建立相应的动态失速模型进行气动计算。对定常变弯、简谐变弯两种常见工况下系统的临界速度变化进行分析对比,发现定常变弯对气弹稳定性影响较小,简谐变弯的影响也可归纳为受迫振荡。在对结果的观察中发现反相的攻角-弯度角相位对振幅发散具有一定的抑制作用,据此进一步研究受控反相变弯下的气弹特性,发现一定的控制参数下确可抑制颤振出现,但也可能导致系统出现新的位移响应形式。  相似文献   

10.
陆洋  周桂林 《太阳能学报》2012,33(2):210-214
基于模糊逻辑数学方法建立了风力机动态失速模型,用于计算风力机翼型的非定常气动载荷。以风力机翼型S809为算例进行了非定常气动载荷的计算。计算结果表明:基于模糊逻辑的动态失速模型得到的预测结果与试验数据吻合良好,且比Leishman-Beddoes模型具有更高的预估精度,能够捕捉风力机翼型动态失速的细节特征,从而证明了该方法的正确性和有效性。  相似文献   

11.
风力机复杂运行环境使叶片常处于失速环境,导致翼型升力骤降,严重影响风力机气动性能.为改善翼型流动分离,延缓失速,对凹槽-襟翼对翼型动态失速特性作用效果开展研究,并利用计算流体力学方法分析不同折合频率与翼型厚度时凹槽-襟翼对翼型气动性能的影响.结果表明:俯仰振荡过程中,凹槽-襟翼可有效提升翼型吸力面流速,降低失速攻角下逆...  相似文献   

12.
风力机叶片动态失速时的非定常气动特性及严重的迟滞现象使得风力机功率实测值严重偏离其静态预测值。鉴于此,基于Theodorsen理论、基尔霍夫势流理论,在忽略低阶附加质量引起的下洗气流加速度项及状态变量转换后,提出一种包括翼型附着流和后缘动态分离流的新型动态失速模型。利用该模型分析NREL 5 MW海上风力机叶片6种翼型的非定常动态失速特性得出:通过翼型的气流在完全附着流与完全分离流之间不断转换,受附着流脱落尾诱导的动态下洗气流影响及边界层动态分离产生的压力滞后的双重作用,动态升力系数变化曲线和静态升力现象曲线偏差较大,6种翼型动态升力系数变化曲线均呈非常明显的迟滞环现象。DU40、DU35、DU30、DU25、DU21和NACA64这6种翼型动态升力系数增幅明显,分别达17.6%、60.9%、60.7%、55.1%、63.7%和40.8%。动态失速攻角极大地超过静态失速攻角,分别增大到36.53°、21.40°、20.20°、17.68°、16.97°和21.42°。6种翼型动态失速预测结果与公开实验数据结论一致,证实所提出的动态失速气动模型计算结果准确可信,具有较强通用性。  相似文献   

13.
S. Schreck  M. Robinson  M. Hand  D. Simms 《风能》2000,3(4):215-232
Horizontal axis wind turbines can experience significant time‐varying aerodynamic loads, potentially causing adverse effects on structures, mechanical components and power production. As designers attempt lighter and more flexible wind energy machines, greater accuracy and robustness will become even more critical in future aerodynamics models. Aerodynamics modelling advances, in turn, will rely on more thorough comprehension of the three‐dimensional, unsteady, vortical flows that dominate wind turbine blade aerodynamics under high‐load conditions. To experimentally characterize these flows, turbine blade surface pressures were acquired at multiple span locations via the NREL Phase IV Unsteady Aerodynamics Experiment. Surface pressures and associated normal force histories were used to characterize dynamic stall vortex kinematics and normal force amplification. Dynamic stall vortices and normal force amplification were confirmed to occur in response to angle‐of‐attack excursions above the static stall threshold. Stall vortices occupied approximately one‐half of the blade span and persisted for nearly one‐fourth of the blade rotation cycle. Stall vortex convection varied along the blade, resulting in dramatic deformation of the vortex. Presence and deformation of the dynamic stall vortex produced corresponding amplification of normal forces. Analyses revealed consistent alterations to vortex kinematics in response to changes in reduced frequency, span location and yaw error. Finally, vortex structures and kinematics not previously documented for wind turbine blades were isolated. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

14.
定常吸气装置可有效提高垂直轴风力机气动性能,改善风轮流场结构及翼型动态失速特性。基于CFD方法对垂直轴风力机进行数值模拟,研究不同叶尖速比(TSR)下定常吸气对风力机气动及流场特性的影响,对比分析原始风力机及定常吸气作用下的风能利用率、整机转矩系数及涡量分布。结果表明:不同尖速比下定常吸气均可显著提高风力机气动性能,减小风轮载荷波动,降低最佳叶尖速比,提高风力机运行稳定性;叶尖速比为2.51时,风能利用系数增加34.69%;定常吸气削弱了风轮叶片间尾涡脱落的影响,抑制叶片前缘涡的形成,减缓了叶片的动态失速现象,对风轮流场有良好的改善效果。  相似文献   

15.
Horizontal axis wind turbines (HAWTs) experience three‐dimensional rotational and unsteady aerodynamic phenomena at the rotor blades sections. These highly unsteady three‐dimensional effects have a dramatic impact on the aerodynamic load distributions on the blades, in particular, when they occur at high angles of attack due to stall delay and dynamic stall. Unfortunately, there is no complete understanding of the flow physics yet at these unsteady 3D flow conditions, and hence, the existing published theoretical models are often incapable of modelling the impact on the turbine response realistically. The purpose of this paper is to provide an insight on the combined influence of the stall delay and dynamic stall on the blade load history of wind turbines in controlled and uncontrolled conditions. New dynamic stall vortex and nonlinear tangential force coefficient modules, which integrally take into account the three dimensional rotational effect, are also proposed in this paper. This module along with the unsteady influence of turbulent wind speed and tower shadow is implemented in a blade element momentum (BEM) model to estimate the aerodynamic loads on a rotating blade more accurately. This work presents an important step to help modelling the combined influence of the stall delay and dynamic stall on the load history of the rotating wind turbine blades which is vital to have lighter turbine blades and improved wind turbine design systems.  相似文献   

16.
The study presents and compares aerodynamic simulations for an airfoil section with an adaptive trailing edge flap, which deflects following a smooth deformation shape. The simulations are carried out with three substantially different methods: a Reynolds‐averaged Navier–Stokes solver, a viscous–inviscid interaction method and an engineering dynamic stall model suitable for implementation in aeroelastic codes based on blade element momentum theory. The aerodynamic integral forces and pitching moment coefficients are first determined in steady conditions, at angles of attack spanning from attached flow to separated conditions and accounting for the effects of flap deflection; the steady results from the Navier–Stokes solver and the viscous–inviscid interaction method are used as input data for the simpler dynamic stall model. The paper characterizes then the dynamics of the unsteady forces and moments generated by the airfoil undergoing harmonic pitching motions and harmonic flap deflections. The unsteady aerodynamic coefficients exhibit significant variations over the corresponding steady‐state values. The dynamic characteristics of the unsteady response are predicted with an excellent agreement among the investigated methods at attached flow conditions, both for airfoil pitching and flap deflection. At high angles of attack, where flow separation is encountered, the methods still depict similar overall dynamics, but larger discrepancies are reported, especially for the simpler engineering method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A 2D vortex panel model with a viscous boundary layer formulation has been developed for the numerical simulation of a vertical axis wind turbine (VAWT), including the operation in dynamic stall. The model uses the ‘double wake’ concept to reproduce the main features of the unsteady separated flow, including the formation and shedding of strong vortical structures and the wake–blade interaction. The potential flow equations are solved together with the integral boundary layer equations by using a semi‐inverse iterative algorithm. A new criterion for the reattachment of the boundary layer during the downstroke of a dynamically stalled aerofoil is implemented. The model has been validated against experimental data of steady aerofoils and pitching aerofoils in dynamic stall at high and low Reynolds numbers (Re = 1.5 × 106 and Re = 5 × 104). For the low Reynolds number case, time‐resolved 2D particle image velocimetry (PIV) measurements have been performed on a pitching NACA 0012 aerofoil in dynamic stall. The PIV vorticity fields past the oscillating aerofoil are used to test the model capability of capturing the formation, growth and release of the strong leading edge vortex that characterizes the dynamic stall. Furthermore, the forces extracted from the PIV velocity fields are compared with the predicted ones for a quantitative validation of the model. Finally, the model is applied to the computation of the wake flow past a VAWT in dynamic stall; the predicted vorticity fields and forces are in good agreement with phase‐locked PIV data and CFD‐DES available in the literature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号