首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Mullite transformation kinetics of sol-gel-derived diphasic mullite gels doped with P2O5, TiO2, and B2O3 were studied using quantitative X-ray diffraction and differential thermal analysis (DTA). The mullite transformation temperature initially increased with P2O5 doping because of phase separation and formation of α-alumina and cristobalite. In TiO2-doped samples, the mullite transformation temperature decreased with TiO2 doping, and the transformation rate increased with decreasing TiO2 particle size. Kinetic studies showed that titania reduced the activation energy for both nucleation and growth relative to pure diphasic mullite gels by lowering the glass viscosity and/or enhancing the solid-state mass transport through lattice defects. B2O3 doping decreased the mullite transformation temperature and lowered the activation energy for both nucleation and growth but especially affected the mullite nucleation process, as indicated by the much smaller grain size.  相似文献   

2.
The Al2O3–SiO2 system has been reassessed using a solution model for mullite extending from sillimanite to a hypothetical state of alumina. The property of sillimanite, to be used to describe one of the end-members, was extracted from an analysis of the T – P phase diagram for Al2SiO5 polymorphs. It was possible to represent the information on the range of stability of mullite, including some showing that mullite extends to higher SiO2 contents than represented by the composition of 3:2 mullite. An attempt was made to model the liquid with the ionic two-sublattice model using a new species AlO2−1. The pressure dependence of Al2SiO5 polymorphs was optimized by a new model recently implemented in Thermo-Calc.  相似文献   

3.
Stoichiometric mullite (71.38 wt% Al2O3-28.17 wt% SiO2) and 80 wt% Al2O3-20 wt% SiO2 gels were prepared by the single-phase and/or diphasic routes. Dense sintered bodies were prepared from both sets of gels in the Al2O3-SiO2 system. Apparent densities of 96% and 97% of theoretical density were measured for the diphasic (using two sols) mullite samples sintered at 1200° and 1300°C for 100 min, respectively; this compared with 85% and 94% for the single-phase xerogels under the same conditions, and to much lower values for mullite prepared from conventional mixed powders. The microstructure of the mullite pellets from diphasic xerogel precursors is also considerably finer.  相似文献   

4.
Dense mullite ceramics were successfully produced at temperatures below 1300°C from amorphous SiO2-coated gamma-Al2O3 particle nanocomposites (AS-gammaA). This method reduces processing temperatures by similar/congruent300°C or more with respect to amorphous SiO2-coated alpha-Al2O3 particle microcomposites (AS-alphaA) and to other Al2O3-SiO2 reaction couples. The good densification behavior and the relatively low mullite formation temperature make AS-gammaA nanocomposites an excellent matrix raw material for polycrystalline aluminosilicate fiber-reinforced mullite composites.  相似文献   

5.
High-purity mullite-SiC-whisker composites and mullite-ZrO2-SiC-whisker composites were fabricated in situ by hot-pressing using a matrix prepared by the alkoxide process. Varying degrees of ZrO2 stabilization were achieved by varying amounts of Y2O3 or MgO addition. Microstructural characterization was accomplished using SEM and energy dispersive analysis. Room-temperature flexural strength and fracture toughness were determined as a function of SiC-whisker content (0% to 30%) and ZrO2-stabilizer content. The flexural strength of mullite varied with composition and was increased ∼50% by the addition of ∼30% ZrO2 phase. The flexural strength of mullite and mullite + 30% ZrO2 was increased ∼50% for 30% SiC-whisker additions. The fracture toughness of mullite + 30% ZrO2 was nearly twice that of mullite. For a 30% SiC-whisker addition, the fracture toughness of mullite was doubled, and the fracture toughness of mullite + 30% ZrO2 was increased 25% to 50%.  相似文献   

6.
Starting powders containing 72 wt% Al2O3 and 28 wt% SiO2, were prepared by sol-gel methods classified as colloidal and polymeric. Compacts fired at 1700°C showed significant differences in microstructure. The specimens formed with the colloidal powder had mullite grains of prismatic shape and a liquid phase; with polymeric powder, mullite grains were granular with no liquid phase present. It is shown that the mullite grains in the first case are higher in AI2O3 content, resulting in an excess of SiO2 which is the base for the liquid phase. In the second case, the mullite grains have the same Al2O3 content as the starting powders. The presence of a liquid phase in the first case is considered to be metastable, resulting from the nature of the starting materials and processing conditions employed.  相似文献   

7.
Liquidus phase equilibrium data are presented for the system Al2O3-Cr2O3-SiO2. The liquidus diagram is dominated by a large, high-temperature, two-liquid region overlying the primary phase field of corundum solid solution. Other important features are a narrow field for mullite solid solution, a very small cristobalite field, and a ternary eutectic at 1580°C. The eutectic liquid (6Al2O3-ICr2O3-93SiO2) coexists with a mullite solid solution (61Al2O3-10Cr2O3-29SiO2), a corundum solid solution (19Al2O3-81Cr2O3), and cristobalite (SO2). Diagrams are presented to show courses of fractional crystallization, courses of equilibrium crystallization, and phase relations on isothermal planes at 1800°, 1700°, and 1575°C. Tie lines were sketched to indicate the composition of coexisting mullite and corundum solid solution phases.  相似文献   

8.
High-temperature diffusion kinetics and phase relations between couples of fused SiO2 or cristobalite and sapphire or mullite were investigated in air and in helium. Subsolidus liquid formation between sapphire and cristobalite indicates the existence of a metastable system without mullite. A liquid phase is considered to be essential for the nucleation of mullite. The growth rate of mullite exceeded its dissolution rate in semi-infinite fused-SiO2-sapphire couples above 1634°C. The inter-facial liquid compositions provided data for a minor revision of the mullite liquidus curve. Diffusion coefficients calculated from the Al profiles vary greatly with concentration and temperature, resulting in a large range of values for apparent activation energy, which decreases with increasing Al2O3 content (∼310 to ∼60 kcal/mol for ∼4 to ∼22 wt% Al2O3). The diffusion process in the liquid is considered to be cooperative movement of oxygen-containing Al and Si complexes whose nature changes with composition and temperature; this change in the diffusing species contributes to the range in the values of experimental apparent activation energies.  相似文献   

9.
SiO2-Al2O3 melts containing 42 and 60 wt% A12O3 were homogenized at 2090°C (∼10°) and crystallized by various heat treatment schedules in sealed molybdenum crucibles. Mullite containing ∼78 wt% A12O3 precipitated from the 60 wt% A12O3 melts at ∼1325°± 20°C, which is the boundary of a previously calculated liquid miscibility gap. When the homogenized melts were heat-treated within this gap, the A12O3 in the mullite decreased with a corresponding increase in the Al2O3 content of the glass. A similar decrease of Al2O3 in mullite was observed when crystallized melts were reheated at 1725°± 10°C; the lowest A12O3 content (∼73.5 wt%) was in melts that were reheated for 110 h. All melts indicated that the composition of the precipitating mullite was sensitive to the heat treatment of the melts.  相似文献   

10.
We investigated the effects of a chemically-vapor-deposited mullite coating (∼100 nm) on the oxidation resistance of sintered Si3N4 in air and steam environments. The coating was sacrificially incorporated into the thermally grown oxide (TGO) on Si3N4 during isothermal oxidation in air at 1400°C, leading to significantly reduced TGO growth as well as markedly improved TGO morphology. This improvement can be attributed to the refractory and viscous nature of the SiO2-Al2O3 system, compared with SiO2, when under the influence of alkali and/or alkaline-earth fluxing elements. However, the mullite coating had little effect on the stability of the ceramic in the steam environment at 1200°C, due likely to high activity of SiO2 in mullite.  相似文献   

11.
Si3N4 substrates coated with chemically-vapor-deposited, crystalline mullite (3Al2O3.2SiO2) were subjected to a corrosive environment containing Na2SO4 and O2 at 1000°C for 100 h. The composition and microstructure of the as-deposited and corroded specimens were examined and compared. The coating appeared to be effective in preserving and therefore protecting the surface microstructure of the underlying Si3N3 substrates. However, a small degree of Na penetration through mullite grain boundaries was observed to a coating depth of ∼1 μm.  相似文献   

12.
The crystallization of Al2O3-rich glasses in the system SiO2-Al2O3 which were prepared by flame-spraying and/or splat-cooling was studied by DTA, electron microscopy, and X-ray diffraction. Over a wide range of compositions, the crystallization temperature ( Tx ) remained near 1000°C, changing smoothly with composition. In all cases crystallization of mullite was detected by X-ray diffraction. In the low-Al2O3 region, coarsening of the microstructure during crystallization was observed by electron microscopy. In the high-Al2O3 region mullite and γ-Al2O3 cocrystallized; this behavior may be interpreted as evidence of a cooperative process of crystallization at the respective Tx 's. The crystallite size of the mullite immediately after rapid crystallization increased continuously with increasing Al2O3 content. In light of the Tx data, the adequacy of the evidence for the proposed metastable miscibility gap in the SiO2-Al2O3 system is questioned.  相似文献   

13.
The chemical composition of mullite which was termed from 2SiO23Al2O3 xerogel by firing was examined by analytical TEM. Mullite formed at 950°C firing showed around 66 mol% Al2O3, which was fairly Al2O3 rich compared with the bulk composition. The chemical composition of mullite gradually approached the bulk composition as the firing temperature increased to 1400°C and slightly departed again above that firing temperature.  相似文献   

14.
Mullite composites toughened with ZrO2 (with or without a MgO or Y2O3 stabilizer) and/or SiC whiskers (SiC( w )) were fabricated by hot-pressing powders prepared from Al, Si, Zr, and Mg(Y) alkoxide precursors by a sol–gel process. Micro-structures were studied by using XRD. SEM, and analytical STEM. Pure mullite samples contained prismatic, preferentially oriented mullite grains. However, the addition of ZrO2, as well as the hot-pressing temperature, affected the morphology and grain size in the composites; a fine, uniform, equiaxed microstructure was obtained. The effect of SiC( W ) was less pronounced than that of ZrO2. Glassy phases were present in mullite and mullite/SiC( W ) composites, but were rarely observed in Al2O3-rich or ZrO2-containing samples. The formation of zircon due to the reaction between ZrO2 and SiO2 and the considerable solid solution of SiO2 in ZrO2 prevented the formation of the glassy phase, whereas the reaction between Al2O3 and MgO in MgO-containing samples formed a spinel phase and also deprived the ZrO2 phase of the stabilizer. Intergranular ZrO2 particles were either monoclinic or tetragonal, depending on size and stabilizer content; small intragranular ZrO2 inclusions were usually tetragonal in structure.  相似文献   

15.
Two kinds of xerogels were prepared by the slow and rapid hydrolyses of tetraethoxysilane and aluminum nitrate nonahydrate dissolved in ethanol. Xerogels prepared by slow hydrolysis crystallized mullite directly from the amorphous state on firing whereas those formed by rapid hydrolysis crystallized a spinel phase before mullite formation. The composition of the spinel phase was characterized by various methods to be near SiO2·6Al2O3. The process of mullite formation is discussed in relation to the structures of the starting materials.  相似文献   

16.
Reaction-Bonded Mullite/Zirconia Composites   总被引:4,自引:0,他引:4  
The feasibility of fabricating dense, low-shrinkage, mullite/ ZrO2 composites based on the reaction bonding of alumina (RBAO) process and the reaction sintering of zircon is examined. Compacts pressed from an attrition-milled powder mixture of Al, A12O3 and zircon were heated in air according to a two-step heating cycle. The phase evolution and microstructural development during reaction bonding were traced by X-ray diffraction, nuclear magnetic resonance, and scanning electron microscopy on samples extracted from various points along the heating cycle. It is seen that, as in conventional RBAO, AI oxidizes to γ-Al2O3 which then transforms to α-AI2O3 between 1100° and 1200°C. The zircon dissociation commences at ∼1400°C and is practically complete by 1500°C. Mullite enriched in Al2O3 forms initially, but 3:2 stoichiometry is attained in the final product which consists of mullite, t - and m-ZrO2, and residual α-AI2O3. The flexure strength of the composite is superior to that of pure mullite, and ∼80% of the strength is retained up to 1200°C. Although there was no toughness enhancement relative to mullite, this should be achievable by optimizing the fabrication procedure.  相似文献   

17.
Mechanical mixture of γ-Al2O3 and amorphous SiO2, and diphasic Al2O3/SiO2 gels of three different compositions were synthesized. They were subjected to heat treatment to various temperatures in the range 900°–1600°C. Qualitative X-ray diffraction data show that these diphasic gels do not crystallize to a combined mixture of θ-Al2O3 and α-Al2O3 polymorphs at the intermediate stage, prior to mullite formation. Estimated mullite formation data show that the course of its formation from mixed oxides was different from that of diphasic gels. Results are compared with previous findings and the concept of Al–Si spinel formation in the phase transformation of stoichiometric diphasic gel system is substantiated.  相似文献   

18.
The free energy of reaction for the formation of mullite from its oxide components was derived from equilibrium studies in the system CoO-Al2O3-SiO2. Within this system there appears, at solidus temperature in a certain composition area, the phase assemblage mullite + silica + spinel (= cobalt aluminate) + liquid. Determination of the oxygen pressure of a gas phase at which metallic cobalt precipitates from this phase assemblage and from the phase assemblage spinel (= cobalt aluminate) + corundum in the system CoO-Al2O3 permits calculation of ΔG° for the reaction 3Al2O3+ 2SiO2= Al6Si2O13. The value obtained at 1422°C is -5.8 kcal.  相似文献   

19.
Alumina reacts with 1 atm of SiF4 below 660°± 7°C to form A1F3 and SiO2. At higher temperatures the product is a mixture of fluorotopaz and AIF3. Mixtures of fluorotopaz and AIF3 decompose in 1 atm of SiF4 at 973°± 8°C and form tabular α-alumina. The equilibrium vapor pressure of SiF4 above mixtures of fluorotopaz and AlF3 is log p (atm) = 9.198 – 11460/ T (K). Fluorotopaz itself decomposes at 1056°± 5°C in 1 atm of SiF4 to give acicular mullite, 2Al2O3.1.07SiO2. Alumina and mullite are stable in the presence of 1 atm of SiF4 above 973° and 1056°C, respectively. The phase diagram of the system SiO2-Al2O3-SiF4 shows only gas-solid equilibria.  相似文献   

20.
Yttria-doped tetragonal ZrO2 polycrystal (Y-TZP)lmullite composites were sintered at 1450° to 1500°C in air to disperse rodlike mullite grains at the grain boundary of Y-TZP and the mechanical and thermal properties were investigated. The aspect ratios of mullite grain were >2. High fracture strength of 1000 MPa and fracture toughness of 12 MPa·m1/2 were obtained by dispersing <20 vol% of mullite into Y-TZP. The thermal expansion coefficient of Y-TZP/mullite composites decreased with increasing mullite content. The thermal shock resistance of Y-TZP was greatly improved by dispersion of rodlike mullite grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号