首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Power generation and its storage using solar energy and hydrogen energy systems is a promising approach to overcome serious challenges associated with fossil fuel-based power plants. In this study, an exergoeconomic model is developed to analyze a direct steam solar tower-hydrogen gas turbine power plant under different operating conditions. An on-grid solar power plant integrated with a hydrogen storage system composed of an electrolyser, hydrogen gas turbine and fuel cell is considered. When solar energy is not available, electrical power is generated by the gas turbine and the fuel cell utilizing the hydrogen produced by the electrolyser. The effects of different working parameters on the cycle performance during charging and discharging processes are investigated using thermodynamic analysis. The results indicate that increasing the solar irradiation by 36%, leads to 13% increase in the exergy efficiency of the cycle. Moreover, the mass flow rate of the heat transfer fluid in solar system has a considerable effect on the exergy cost of output power. Solar tower has the highest exergy destruction and capital investment cost. The highest exergoeconomic factor for the integrated cycle is 60.94%. The steam turbine and PEM electrolyser have the highest share of exergoeconomic factor i.e., 80.4% and 50%, respectively.  相似文献   

2.
This paper examines an integrated gasification and solid oxide fuel cell (SOFC) system with a gas turbine and steam cycle that uses heat recovery of the gas turbine exhaust. Energy and exergy analyses are performed with two different types of coal. For the two different cases, the energy efficiency of the overall system is 38.1% and 36.7%, while the exergy efficiency is 27% and 23.2%, respectively. The effects of changing the reference temperature on the exergy destruction and exergy efficiency of different components are also reported. A parametric study on the effects of changing the pressure ratio on the component performance is presented.  相似文献   

3.
This study proposes a trigeneration system based on solid oxide fuel cell (SOFC) for generating power, cooling and heating simultaneously. The system mainly contains a SOFC, a gas turbine (GT), an organic Rankine cycle (ORC), a steam ejector refrigerator (SER) and a heat exchanger. The thermodynamic, exergoeconomic and exergoenvironmental models of proposed trigeneration system are developed, and the effects of design parameters on system performances are analyzed. The results indicate that the system average product cost and environmental impact per unit of exergy increase with SOFC inlet temperature and working pressure, the pinch point temperature difference and evaporating pressure of Generator, while decrease with the current density of fuel cell. Finally, optimization is performed to achieve the optimal exergy-based performance. It is revealed that though the system exergy efficiency is decreased by 7.64% after optimization, the system average product cost and environmental impact per unit of exergy are significantly reduced.  相似文献   

4.
This paper presents exergy analysis of a hybrid solid oxide fuel cell and gas turbine (SOFC/GT) system in comparison with retrofitted system with steam injection. It is proposed to use hot gas turbine exhaust gases heat in a heat recovery steam generator to produce steam and inject it into gas turbine. Based on a steady-state model of the processes, exergy flow rates are calculated for all components and a detailed exergy analysis is performed. The components with the highest proportion of irreversibility in the hybrid systems are identified and compared. It is shown that steam injection decreases the wasted exergy from the system exhaust and boosts the exergetic efficiency by 12.11%. Also, 17.87% and 12.31% increase in exergy output and the thermal efficiency, respectively, is demonstrated. A parametric study is also performed for different values of compression pressure ratio, current density and pinch point temperature difference.  相似文献   

5.
《Energy》1999,24(9):783-793
The aggressive nature of the flue gases in municipal waste incinerators does not allow the temperature of steam in the boiler to rise above 400°C. An increase in steam temperature can be achieved by external superheating in a heat recovery steam generator positioned behind a gas turbine, so that steam of a higher energy content becomes available for electricity production. The paper addresses two basic schemes. In one case, steam generated at a waste-to-energy plant is superheated in a combined-cycle plant that operates in parallel. In the other case, the exhaust from a gas turbine plant is sent through a superheater section to the waste incinerator's boiler providing preheated combustion air. Performance of these configurations together with two modified schemes was analyzed in terms of efficiency, natural gas consumption and boiler surface area. An exergy analysis of the cases was carried out. The results showed that the integrated options can effect a substantial increase in efficiency. The hot windbox configuration was found the most effective solution, offering a smaller boiler surface area along with a moderate rate of natural gas consumption.  相似文献   

6.
A comprehensive exergy, exergoeconomic and environmental impact analysis and optimization is reported of several combined cycle power plants (CCPPs). In the first part, thermodynamic analyses based on energy and exergy of the CCPPs are performed, and the effect of supplementary firing on the natural gas-fired CCPP is investigated. The latter step includes the effect of supplementary firing on the performance of bottoming cycle and CO2 emissions, and utilizes the first and second laws of thermodynamics. In the second part, a multi-objective optimization is performed to determine the “best” design parameters, accounting for exergetic, economic and environmental factors. The optimization considers three objective functions: CCPP exergy efficiency, total cost rate of the system products and CO2 emissions of the overall plant. The environmental impact in terms of CO2 emissions is integrated with the exergoeconomic objective function as a new objective function. The results of both exergy and exergoeconomic analyses show that the largest exergy destructions occur in the CCPP combustion chamber, and that increasing the gas turbine inlet temperature decreases the CCPP cost of exergy destruction. The optimization results demonstrates that CO2 emissions are reduced by selecting the best components and using a low fuel injection rate into the combustion chamber.  相似文献   

7.
The results of energy and exergy analyses of two biomass integrated steam injection cycles and combined power cycles are reported. Fog cooling, steam injection and adding steam turbine cycles to gas turbine cycles can enhance the performance of power generation systems. Even with its lower heat value, biomass can be substituted for fossil fuels. The performances of the cycles are assessed under the same conditions. The assessments show that the combined cycle has a higher efficiency at lower values of compressor pressure ratio but the steam injection plant is advantageous at higher pressure ratio values. The steam injection plant has a higher net power under the same conditions, while the exergy loss rate is higher for the combined cycle at all pressure ratios. But the exergy destruction rate is higher for the steam injection cycle at lower compressor pressure ratios, and for the combined cycle at higher pressure ratios.  相似文献   

8.
In this paper, a combined power plant based on the dish collector and biomass gasifier has been designed to produce liquefied hydrogen and beneficial outputs. The proposed solar and biomass energy based combined power system consists of seven different subplants, such as solar power process, biomass gasification plant, gas turbine cycle, hydrogen generation and liquefaction system, Kalina cycle, organic Rankine cycle, and single-effect absorption plant with ejector. The main useful outputs from the combined plant include power, liquid hydrogen, heating-cooling, and hot water. To evaluate the efficiency of integrated solar energy plant, energetic and exergetic effectiveness of both the whole plant and the sub-plants are performed. For this solar and biomass gasification based combined plant, the generation rates for useful outputs covering the total electricity, cooling, heating and hydrogen, and hot water are obtained as nearly 3.9 MW, 6584 kW, 4206 kW, and 0.087 kg/s in the base design situations. The energy and exergy performances of the whole system are calculated as 51.93% and 47.14%. Also, the functional exergy of the whole system is calculated as 9.18% for the base working parameters. In addition to calculating thermodynamic efficiencies, a parametric plant is conducted to examine the impacts of reference temperature, solar radiation intensity, gasifier temperature, combustion temperature, compression ratio of Brayton cycle, inlet temperature of separator 2, organic Rankine cycle turbine and pump input temperature, and gas turbine input temperature on the combined plant performance.  相似文献   

9.
我国的燃气_蒸汽联合循环发电技术前景良好   总被引:1,自引:0,他引:1       下载免费PDF全文
针对我国能源结构和能源政策,指出燃气-蒸汽联合循环是提高发电效率和解决环境污染的重要途径,尤其是国际公认的最有发展前途的两种燃煤联合循环发电技术;IGCC和PFBC-CC。文中简要地介绍了这两种联合循环发电技术。  相似文献   

10.
Combined cycle configuration has the ability to use the waste heat from the gas turbine exhaust gas using the heat recovery steam generator for the bottoming steam cycle. In the current study, a natural gas‐fired combined cycle with indirectly fired heating for additional work output is investigated for configurations with and without reheat combustor (RHC) in the gas turbine. The mass flow rate of coal for the indirect‐firing mode in circulating fluidized bed (CFB) combustor is estimated based on fixed natural gas input for the gas turbine combustion chamber (GTCC). The effects of pressure ratio, gas turbine inlet temperature, inlet temperatures to the air compressor and to the GTCC on the overall cycle performance of the combined cycle configuration are analysed. The combined cycle efficiency increases with pressure ratio up to the optimum value. Both efficiency and net work output for the combined cycle increase with gas turbine inlet temperature. The efficiency decreases with increase in the air compressor inlet temperature. The indirect firing of coal shows reduced use with increase in the turbine inlet temperature due to increase in the use of natural gas. There is little variation in the efficiency with increase in GTCC inlet temperature resulting in increased use of coal. The combined cycle having the two‐stage gas turbine with RHC has significantly higher efficiency and net work output compared with the cycle without RHC. The exergetic efficiency also increases with increase in the gas turbine inlet temperature. The exergy destruction is highest for the CFB combustor followed by the GTCC. The analyses show that the indirectly fired mode of the combined cycle offers better performance and opportunities for additional net work output by using solid fuels (coal in this case). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
燃煤气的闭式 STIG 循环的热力学分析   总被引:6,自引:3,他引:3       下载免费PDF全文
陈安斌  王永春 《热能动力工程》1998,13(4):254-256,266
本文将煤气化技术用于闭式注蒸汽燃气轮机循环,对以煤气化产物为燃料的闭式注蒸汽循环进行了热力学分析,并与燃煤气的开式STIG循环做了比较,同时分析了回收水量的影响因素。  相似文献   

12.
This paper has proposed an improved liquefied natural gas (LNG) fuelled combined cycle power plant with a waste heat recovery and utilization system. The proposed combined cycle, which provides power outputs and thermal energy, consists of the gas/steam combined cycle, the subsystem utilizing the latent heat of spent steam from the steam turbine to vaporize LNG, the subsystem that recovers both the sensible heat and the latent heat of water vapour in the exhaust gas from the heat recovery steam generator (HRSG) by installing a condensing heat exchanger, and the HRSG waste heat utilization subsystem. The conventional combined cycle and the proposed combined cycle are modelled, considering mass, energy and exergy balances for every component and both energy and exergy analyses are conducted. Parametric analyses are performed for the proposed combined cycle to evaluate the effects of several factors, such as the gas turbine inlet temperature (TIT), the condenser pressure, the pinch point temperature difference of the condensing heat exchanger and the fuel gas heating temperature on the performance of the proposed combined cycle through simulation calculations. The results show that the net electrical efficiency and the exergy efficiency of the proposed combined cycle can be increased by 1.6 and 2.84% than those of the conventional combined cycle, respectively. The heat recovery per kg of flue gas is equal to 86.27 kJ s?1. One MW of electric power for operating sea water pumps can be saved. The net electrical efficiency and the heat recovery ratio increase as the condenser pressure decreases. The higher heat recovery from the HRSG exit flue gas is achieved at higher gas TIT and at lower pinch point temperature of the condensing heat exchanger. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
蒸汽-燃气联合循环装置由于其较高的发电效率而被广泛应用于各大、中型电厂。然而,在微小型燃气-蒸汽发电装置中,蒸汽轮机的应用无疑使得装置体积和成本费用大增。因此,本文提出在小型分布式发电装置中,采用环境压力吸热燃气轮机循环(APGC)装置来替代蒸汽轮机装置吸收燃气轮机排出的废气能量,组成燃-燃联合循环,增加系统本身的做功能力和效率,达到节能、减少燃料消耗的目的。本文从热力学第一定律和第二定律出发,基于ASPENPLUS软件分别建立了燃-燃联合循环、蒸-燃联合循环模型,比较分析了两种循环装置在能量质量和数量上的利用程度。结果表明:燃-燃联合循环装置的效率较高,这在要求能源高效利用的今天具有一定的理论意义。  相似文献   

14.
Integrated coal gasification combined cycle (IGCC) provides a great opportunity for clean utilization of coal while maintaining the advantage of high energy efficiency brought by gas turbines. A challenging problem arising from the integration of an existing gas turbine to an IGCC system is the performance change of the gas turbine due to the shift of fuel from natural gas to synthesis gas, or syngas, mainly consisting of carbon monoxide and hydrogen. Besides the change of base-load performance, which has been extensively studied, the change of part-load performance is also of great significance for the operation of a gas turbine and an IGCC plant.In this paper, a detailed mathematical model of a syngas fired gas turbine is developed to study its part-load performance. A baseline is firstly established using the part-load performance of a natural gas fired gas turbine, then the part-load performance of the gas turbine running with different compositions of syngas is investigated and compared with the baseline. Particularly, the impacts of the variable inlet guide vane, the degree of fuel dilution, and the degree of air bleed are investigated. Results indicate that insufficient cooling of turbine blades and a reduced compressor surge margin are the major factors that constrain the part-load performance of a syngas fired gas turbine. Results also show that air bleed from the compressor can greatly improve the working condition of a syngas fired gas turbine, especially for those fired with low lower heating value syngas. The regulating strategy of a syngas fired gas turbine should also be adjusted in accordance to the changes of part-load performance, and a reduced scope of constant TAT (turbine exhaust temperature) control mode is required.  相似文献   

15.
One of the proposals to increase the performance of the gas turbines is to improve chemical recuperated cycle. In this cycle, the heat in the turbine exhaust gases is used to heat and modify the chemical characteristics of the fuel. One mixture of natural gas and steam receives heat from the exhaust turbine gases; the mixture components react among themselves producing hot synthesis gas. In this work, an analysis and nonlinear optimization of the cycle were made in order to investigate the temperature and pressure influence on the global cycle performance. The chemical composition in the reformer was assumed according to chemical equilibrium equations, which presents good agreement with data from literature. The mixture of hot gases was treated like ideal gases. The maximum net profit was achieved and a thermodynamic second law analysis was made in order to detect the greatest sources of irreversibility.  相似文献   

16.
A. Corrado  P. Fiorini  E. Sciubba 《Energy》2006,31(15):3186-3198
Aim of this paper is to analyze the performance of an innovative high-efficiency steam power plant by means of two “life cycle approach” methodologies, the life cycle assessment (LCA) and the “extended exergy analysis” (EEA).

The plant object of the analysis is a hydrogen-fed steam power plant in which the H2 is produced by a “zero CO2 emission” coal gasification process (the ZECOTECH© cycle). The CO2 capture system is a standard humid-CaO absorbing process and produces CaCO3 as a by-product, which is then regenerated to CaO releasing the CO2 for a downstream mineral sequestration process.

The steam power plant is based on an innovative combined-cycle process: the hydrogen is used as a fuel to produce high-temperature, medium-pressure steam that powers the steam turbine in the topping section, whose exhaust is used in a heat recovery boiler to feed a traditional steam power plant.

The environmental performance of the ZECOTECH© cycle is assessed by comparison with four different processes: power plant fed by H2 from natural gas steam reforming, two conventional coal- and natural gas power plants and a wind power plant.  相似文献   


17.
Two novel system configurations were proposed for oxy-fuel natural gas turbine systems with integrated steam reforming and CO2 capture and separation. The steam reforming heat is obtained from the available turbine exhaust heat, and the produced syngas is used as fuel with oxygen as the oxidizer. Internal combustion is used, which allows a very high heat input temperature. Moreover, the turbine working fluid can expand down to a vacuum, producing an overall high-pressure ratio. Particular attention was focused on the integration of the turbine exhaust heat recovery with both reforming and steam generation processes, in ways that reduce the heat transfer-related exergy destruction. The systems were thermodynamically simulated, predicting a net energy efficiency of 50–52% (with consideration of the energy needed for oxygen separation), which is higher than the Graz cycle energy efficiency by more than 2 percentage points. The improvement is attributed primarily to a decrease of the exergy change in the combustion and steam generation processes that these novel systems offer. The systems can attain a nearly 100% CO2 capture.  相似文献   

18.
In the present paper thermodynamic analyses, i.e. both energy and exergy analyses have been conducted for a coal based combined cycle power plant, which consists of pressurized circulating fluidized bed (PCFB) partial gasification unit and an atmospheric circulating fluidized bed (ACFB) char combustion unit. Dual pressure steam cycle is considered for the bottoming cycle to reduce irreversibilities during heat transfer from gas to water/steam. The effect of operating variables such as pressure ratio, gas turbine inlet temperature on the performance of combined cycle power plant has been investigated. The pressure ratio and maximum temperature (gas turbine inlet temperature) are identified as the dominant parameters having impact on the combined cycle plant performance. The work output of the topping cycle is found to increase with pressure ratio, while for the bottoming cycle it decreases. However, for the same gas turbine inlet temperature the overall work output of the combined cycle plant increases up to a certain pressure ratio, and thereafter not much increase is observed. The entropy generation, the irreversibilities in each component of the combined cycle and the exergy destruction/losses are also estimated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This paper is part 1 of the study on the energy, exergy, and exergoeconomic analysis of diesel engine powered cogeneration (DEPC). Part 1 presents the formulation developed for such a comprehensive analysis while part 2 is an application of the developed formulation that considers an actual cogeneration power plant. Compression ignition engine powered cogeneration application is among the most efficient simple cycle power generation plants where the efficiencies are around 50%. The DEPC is mostly preferred in regions where natural gas is not available or not preferable because of high unit prices. In this paper, a DEPC plant is considered with all associated components. Mass, energy, and exergy balances are applied to each system component and subsystem. Exergy balance formulations are aimed to yield exergy destructions. Various efficiencies based on both energy and exergy methods and the performance assessment parameters are defined for both the system components and the entire cogeneration plant. The formulations for the cost of products, and cost formation and allocation within the system are developed based on both energy and exergy (i.e., exergoeconomic analysis). The cost analyses formulated here have significant importance to obtain the optimum marketing price of the product of thermal systems to maximize the benefit and/or minimize the cost.  相似文献   

20.
The cement production is an energy intensive industry with energy typically accounting for 50–60% of the production costs. In order to recover waste heat from the preheater exhaust and clinker cooler exhaust gases in cement plant, single flash steam cycle, dual-pressure steam cycle, organic Rankine cycle (ORC) and the Kalina cycle are used for cogeneration in cement plant. The exergy analysis for each cogeneration system is examined, and a parameter optimization for each cogeneration system is achieved by means of genetic algorithm (GA) to reach the maximum exergy efficiency. The optimum performances for different cogeneration systems are compared under the same condition. The results show that the exergy losses in turbine, condenser, and heat recovery vapor generator are relatively large, and reducing the exergy losses of these components could improve the performance of the cogeneration system. Compared with other systems, the Kalina cycle could achieve the best performance in cement plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号