首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
概率主元分析(PPCA)已广泛应用于工业过程监测.然而,PPCA法仅构造了生产过程的静态线性关系,处理具有较强动态特性的实际工业生产过程效果较差.为此提出动态概率主元分析(DPPCA)法,对经过时谱扩展后的变量数据阵,通过期望最大化(EM)算法建立生成模型,从而将静态PPCA推广到动态多变量过程.最后将此法应用于TE过程的仿真研究,结果表明该法有效.  相似文献   

2.
在连续重整加热炉等设备的过程生产中,应用多变量统计中的主元分析方法,可以从集散控制系统自身所带的大量数据中提取有用的信息,建立数学模型,来监控整个生产过程,及时发现和预防故障的产生。  相似文献   

3.
主元分析(principal component analysis)是一种多元统计技术,在过程监控和故障诊断中具有广泛的应用。针对过程监控中数据量大的特点,提出一种稀疏主元分析(sparse principal component analysis)方法,通过引入lasso约束函数,构建稀疏主元分析的框架,将PCA降维问题转化为回归最优化问题,从而求解得到稀疏化的主元,并提高了主元模型的抗干扰能力。由于稀疏后主元相关的数据量减少,利用数据建立过程监控模型,减少了计算量,并缩短了计算时间,进而提高了监控的实时性。利用田纳西伊斯特曼过程(TE processes)进行实验仿真,并与传统的主元分析方法进行对比研究。结果表明,新提出的稀疏主元分析方法在计算效率和监控实时性上均优于传统的主元分析方法。  相似文献   

4.
基于改进主元分析方法的化工生产过程的故障检测   总被引:1,自引:0,他引:1  
针对化工生产过程中出现的对于过程影响较小的故障,提出一种改进主元分析方法,该方法引入了主元子空间之间的差别的概念.仿真研究中,将该方法与传统的主元分析方法同时应用于TE过程中,结果表明改进主元分析方法比传统的主元分析方法(PCA)能更好的检测出对于过程影响较小的故障.  相似文献   

5.
概率神经网络(PNN)-径向基网络的重要变形,它的学习速发快,很适合于故障检测问题,但是当网络输入样本过大时,网络的计算就会很复杂,计算速度就会很缓慢.本文提出用主元分析(PCA)对过程数据进行降维,然后将处理过的数据作为网络输入,这样使网络的计算速度得到了提高.最后将提出的方法用于田纳西伊斯曼过程(Tennessee...  相似文献   

6.
针对过程工业数据中所含的噪声和干扰信号、过程工业的非线性及基于主元分析(Principal Component Analysis,PCA)的统计性能监控法由于不用过程机理模型的信息从而对故障诊断问题难以在理论上作系统分析的缺陷,提出基于小波变换核主元分析和多支持向量机的过程监控方法,该方法首先采用基于小波变换的收缩阈值去噪法对建模数据进行预处理,以有效抑制过程数据中所含的噪声和干扰信号,然后利用核主元分析来进行故障特征的提取,从而提高非线性统计过程监控的准确性;最后提出多支持向量机用来对故障的来源进行分类,以避免求解核主元空间到原始空间的逆映射.将该方法应用到对TE(Tennessee Eastman,TE)过程的监控,表明了所提出方法的有效性,为过程的监控和故障诊断提供了一个新的方法.  相似文献   

7.
传统动态主元分析(DPCA)进行工业过程故障预警时,对所有变量选择相同时间间隔。为克服DPCA中没有考虑到变量延迟、动态变化速度不同的问题,采用变量延迟对齐、时间间隔可变等方法,对DPCA中扩展矩阵的组成方法进行改进。数值仿真结果表明,改进DPCA可以有效减少故障漏报。将该方法应用于原油初馏过程故障预警,在准确预警故障的基础上减少了漏报。  相似文献   

8.
针对变负荷的多工况过程,提出了一种基于分段主元分析的监控方法。对于稳态工况,直接利用历史数据建立不同负荷下的主元监控模型。对于工况之间的过渡过程,根据先验知识可将其划分为跟踪时段和调节时段。在两大时段内分别将训练数据细分为多个子时段,进而在每一子时段内设定参考轨迹,利用训练数据与参考轨迹的残差建立主元监控模型,并采用改进的层次聚类算法合并特性相近的时段。在线监控时,根据负荷设定信息判断过程所处的工况,再选择相应的主元模型进行监控。在Alstom气化炉中的应用结果表明,该算法不仅能够避免传统多模型监控方法在工况过渡时出现的大量误警,也能在过渡过程中实现准确的故障检测。  相似文献   

9.
传统的多向主元分析(MPCA)已广泛应用于监视多变量间歇过程。在MPCA算法中,三维的间歇过程数据需要转换为高维的二维向量,导致计算量和存储空间大,同时不可避免地丢失一些重要信息。因此,提出一种新的基于二维主元分析(2DPCA)的故障诊断方法。由于每个批次的间歇过程数据是一个二维向量(矩阵),应用以各个批次矩阵为分析对象的2DPCA算法,避免矢量化,存储空间和存储需求小;另外,2DPCA采用各个批次的协方差的平均值来进行建模,能够更加准确地反映出不同类型的故障,在一定程度上增强了故障诊断的准确性。半导体工业实例的监视结果说明,2DPCA方法优于MPCA。  相似文献   

10.
具有过渡特性的多阶段间歇过程故障监测是一个复杂的问题,既需要考虑稳定阶段下的故障监测,也需要考虑不同阶段间的过渡故障监测.为克服传统硬划分方法导致误警和漏报率高的缺陷,同时也为实现更加精确、有效的故障监测与诊断,提出一套完整的基于核主元分析-主元分析(KPCA-PCA)的多阶段间歇过程故障监测与诊断策略.该方法依据数据相似度实现阶段划分,定义模糊隶属度辨识相邻阶段间的过渡,最后对稳定阶段和过渡过程分别建立具有时变协方差的PCA和KPCA故障监测与诊断模型.通过对青霉素发酵过程的仿真平台及工业应用研究表明,该方法具有更可靠的监控性能,能及时、准确的检测出过程中存在的异常情况.  相似文献   

11.
提出一种基于模式聚类和混合模型参数自动选择的图库索引方法。因为传统的EM(Expectation Maximization)算法为混合模型聚类问题中的参数估计提供了一个很好的解决方法,但需要事先指定聚类数,影响了高维数据索引的精度和效率。综合利用改进的CEM2(Component-wise EM of Mixture)混合模型自动选择算法、矢量量化和概率近似的索引机制,在保证准确率同时有效提高了检索效率。  相似文献   

12.
基于混合概率PCA模型高光谱图像本征维数确定   总被引:2,自引:1,他引:1  
普鑫 《计算机工程》2007,33(9):204-206
如何有效实现降维是现代成像光谱仪辨识地物类别的一个难点所在。该文在已知高光谱图像地物类别数的情况下,提出了一种采用混合最小描述长度(MMDL)模型选择准则确定高光谱图像本征维数的方法。该方法在期望最大化算法框架下同时实现混合PPCA降维和聚类,并根据MMDL准则确定数据降维维数,可以得到数据在概率意义下的精确的降维表征。仿真数据和真实数据进行的比较实验表明,该方法能精确地选择数据的本征维数。  相似文献   

13.
Cdric  Nicolas  Michel 《Neurocomputing》2008,71(7-9):1274-1282
Mixtures of probabilistic principal component analyzers model high-dimensional nonlinear data by combining local linear models. Each mixture component is specifically designed to extract the local principal orientations in the data. An important issue with this generative model is its sensitivity to data lying off the low-dimensional manifold. In order to address this problem, the mixtures of robust probabilistic principal component analyzers are introduced. They take care of atypical points by means of a long tail distribution, the Student-t. It is shown that the resulting mixture model is an extension of the mixture of Gaussians, suitable for both robust clustering and dimensionality reduction. Finally, we briefly discuss how to construct a robust version of the closely related mixture of factor analyzers.  相似文献   

14.
Clustering problems are central to many knowledge discovery and data mining tasks. However, most existing clustering methods can only work with fixed-dimensional representations of data patterns. In this paper, we study the clustering of data patterns that are represented as sequences or time series possibly of different lengths. We propose a model-based approach to this problem using mixtures of autoregressive moving average (ARMA) models. We derive an expectation-maximization (EM) algorithm for learning the mixing coefficients as well as the parameters of the component models. To address the model selection problem, we use the Bayesian information criterion (BIC) to determine the number of clusters in the data. Experiments are conducted on a number of simulated and real datasets. Results from the experiments show that our method compares favorably with other methods proposed previously by others for similar time series clustering tasks.  相似文献   

15.
Finite mixture models are being increasingly used to provide model-based cluster analysis. To tackle the problem of block clustering which aims to organize the data into homogeneous blocks, recently we have proposed a block mixture model; we have considered this model under the classification maximum likelihood approach and we have developed a new algorithm for simultaneous partitioning based on the classification EM algorithm. From the estimation point of view, classification maximum likelihood approach yields inconsistent estimates of the parameters and in this paper we consider the block clustering problem under the maximum likelihood approach; unfortunately, the application of the classical EM algorithm for the block mixture model is not direct: difficulties arise due to the dependence structure in the model and approximations are required. Considering the block clustering problem under a fuzzy approach, we propose a fuzzy block clustering algorithm to approximate the EM algorithm. To illustrate our approach, we study the case of binary data by using a Bernoulli block mixture.  相似文献   

16.
有限混合密度模型及遥感影像EM聚类算法   总被引:3,自引:0,他引:3       下载免费PDF全文
遥感信息是地球表层信息的综合反映,由于地球表层系统的复杂性和开放性,地表信息是多维的、无限的、遥感信息传递过程中的局限性以及遥感信息之间的复杂相关性,决定了遥感信息其结果的不确定性和多解性,遥感信息具有一定的统计特性,同时又具有高度的随机性和复杂性,在特征空间中往往表现为混合密度分布,针对遥感信息这种统计分布的复杂性,提出了有限混合密度的期望最大(EM)分解模型,该模型假设总体分布可分解为有限个参数化的密度分布,通过EM迭代计算可估计出各密度分布的最大似然参数集;将有限混合EM聚类算法应用于遥感影像的聚类分析中,并与传统统计聚类方法进行了比较,比较结果表明,其对复杂地物的区分具有优势,另外在融合专家知识、初始化等方面具有扩展能力。  相似文献   

17.
基于EM算法的图像小波系数统计研究   总被引:1,自引:0,他引:1  
基于小波分析的贝叶斯(Bayes)图像处理方法常常需要获得图像小波波系数的先验概率分布密度,该文提出,利用混合高斯模型对正交小波域中自然图像的父子小波系数的联合分布密度进行建模,运用非完备数据的极大似然估计算法——期望极大(EM)算法,对该模型的参数进行估计并且给出了联合分布密度函数的模型分量数与迭代次数的确定过程。最后,在后验均值(PM)方法下,把该联合分布密度模型运用于图像去噪研究;仿真结果表明该方法能够获得较好的效果。  相似文献   

18.
二维主分量分析是一种直接面向图像矩阵表达方式的特征抽取与降维方法. 提出了一个基于二维主分量分析的概率模型. 首先, 通过对此产生式概率模型参数的最大似然估计得到主分量(矢量); 然后, 考虑到缺失数据问题, 利用期望最大化算法迭代估计模型参数和主分量. 混合概率二维主分量分析模型在人脸聚类问题上的应用表明概率二维主分量分析模型能作为图像矩阵的密度估计工具. 含有缺失值的人脸图像重构实验阐述了此模型及迭代算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号