首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contents The paper presents a method which makes it possible to determine power losses in the system of two long, parallel, cylindrical and hollow conductors placed in transverse magnetic field changing sinusoidally. — The idea is to apply the finite element method in the region with current and the separation of variables in the region without current. The conditions of the vector potential continuity and the tangential component continuity of the magnetic induction vector were taken into account in the set of equations determined by the Bubnov-Galerkin method. — On the basis of the relations obtained, numerical calculations were performed and power losses in the system defined.
Leistungsverluste in einem aus zwei hohlen Leitern bestehenden und sich in einem querliegenden Wechselfeld befindenden System
Übersicht Im Beitrag wird eine Methode vorgestellt, die die Ermittlung von Leistungsverlusten in einem aus zwei langen parallelen zylindrischen hohlen Leitern bestehenden System, das sich in einem querliegenden Wechselfeld befindet, ermöglicht. — Die Idee der vorgeschlagenen Methode beruht auf einer Anwendung der Methode der finiten Elemente im Strombereich und der Methode der Variablentrennung im stromlosen Bereich. In der Struktur des Gleichungssystems, das von der Bubnov-Galerkin-Methode bestimmt wird, hat man Stetigkeitsbedingungen für das Vektorpotential und für die Tangentenkomponente des Vektors der magnetischen Induktion berücksichtigt. — Auf Grundlage der hergeleiteten Abhängigkeit werden numerische Berechnungen durchgeführt und die Leistungsverluste im betrachteten System ermittelt.

Symbols A vector potential (complex r.m.s. value) - A z-component ofA (complex r.m.s. value) - B the magnetic induction of input (complex r.m.s. value) - d distance between two successive points of the boundary - E electric field intensity vector (complex r.m.s. value) - e 1 metric coefficient - H magnetic field intensity vector (complex r.m.s. value) - I current (r.m.s. value) - Imaginary unit - Imaginary unit - l boundary of the region with current - l h boundary of the region with current approximated by broken line - P complex Poynting vector - P Joule's power losses - r c radius of the conductor - r w radius of the hollow - S boundary of the region - T ijk finite element area - w half a distance between centres of the conductors - x,y,z rectangular coordinates - , ,z bipolar coordinates - z * conjugate complex number ofz - c value of the coordinate on the boundary of the conductor - region - h region approximating the region - e finite element region - i, j, k function of finite-element shape - permeability - conductivity - pulsation - basis function - 3.141593.... - derivative in the normal external direction with respect to the region boundary - 2 scalar Laplacian Indices I region without current - II region with current - b relative values - e single element - i, j, k suffices of vertices of triangular finite-element - L number of discretization points of the region - M number of discretization points on the boundary - N number of the sum terms in the series expansion - V number of finite elements  相似文献   

2.
Contents The Joule power losses in a cylindrical conductor placed in a semi-closed slot and the electrodynamic force acting on this conductor are calculated. The equivalent circuit of the impedance of the conductor is also considered. The investigations are made by using the Bubnow-Galerkin method for the parabolic equation.
Übersicht Es werden die Stromwärmeverluste für den kreisförmigen Leiter in der halbgeschlossenen Nut einer elektrischen Maschine und die auf den Leiter wirkende Kraft berechnet. Die Ersatzschaltungen für die Impedanz einer Maschinennut werden weiter betrachtet. Zur Analyse der parabolischen Differentialgleichung wird die Methode von Bubnow-Galerkin angewandt.

Symbols B magnetic induction - B r ,B components of magnetic induction - C operator in Hilbert space - E z-component of electric field - F -component of electrodynamic force - H Hilbert space - I current (transient value in Part 2, complex r.m.s. value in Appendix 1) - imaginary unit - L inductance - Laplace transform - P power - R resistance - Z impedance - z * conjugate number with complex numberz - Rez, Imz, |z| real part, imaginary part and modulus of complex numberz - magnetic permeability - conductivity - pulsation - 2 scalar laplacian - (|y) scalar product of elements ,y of Hilbert space - norm of element of Hilbert space  相似文献   

3.
Ohne ZusammenfassungZusammenstellung der Formelzeichen =2 f die Kreisfrequenz und die gewöhnliche Schwingungszahl in Hz/s, - exp (–it) das Zeitgesetz der stationären Dipolschwingung - g (e)=–i die elektrodynamische Leitfähigkeit für den elektrischen Verschiebungsstrom in S/cm mit= =1/36·10–11 F/cm für das Vakuum - g (m)=+i die elektrodynamische Leitfähigkeit für den magnetischen Verschiebungsstrom in Ohm/cm mit=4·10H/cm für das Vakuum - c=()–1/2 die dem Medium zukommende Lichtgeschwindigkeit in cm/s, - =c/f die der aufgedrückten Schwingung zukommende Vakuumwellenlänge in cm - 2/ die Wellenzahl des Mediums in 1/cm - (/)1/2 der Wellenwiderstand der freien Raumwelle mit dem Zahlenwert 120 Ohm - die elektrische und magnetische Feldstärke in V/cm und A/cm - x, y, z die drei rechtwinkligen und rechtshändigen Cartesischen Koordinaten - , , die drei rechtwinkligen und rechtshändigen Zylinderkoordinaten - , , die drei rechtwinkligen und rechtshändigen parabolischen Koordinaten - r der Wert für die parabolische Koordinate in der Begrenzungsfläche des parabolischen Horns oder die Brennweite des Drehparabols in cm - q der Wert für die parabolische Koordinate, die die Lage des Dipols auf der Achse fixiert - '=2k die dimensionslosen, reduzierten, parabolischen Koordinaten - R, R q der Abstand des Brennpunkts oder des Dipols vom Aufpunkt in cm - I (e)·,I (m)· das elektrische oder magnetische Moment des Dipols in A/cm und V/cm mit als elementare Dipollänge - zwei Hilfsvektoren in A und V, von denen nur diez-Komponente von Null verschieden ist  相似文献   

4.
Übersicht Es wird in dieser Arbeit die Stromverteilung in einem hinreichend langen, metallischen Stab von trapezförmigem Querschnitt berechnet, der von einem Wechselstrom durchflossen wird und bis auf einen schmalen, von einem magnetischen Wechselfeld erfüllten Luftschlitz von allen Seiten ohne merklichen Luftzwischenraum und isoliert in eine unendlich permeable, metallische Hülle eingebettet liegt. Der Umriß des Leiters mit dem trapezförmigen Querschnitt besteht aus zwei gegenüberliegenden, gleich langen, auseinander-strebenden Geradenstücken, deren Endpunkt oben und unten durch konzentrische Kreisbogen verbunden sind. Die maßgebende partielle Differentialgleichung für die FeldkomponenteE z (, ) in Richtungz der Längsstreckung eines solchen Nutenleiters entspricht dann der ebenen Wellengleichugn in Zylinderkoordinaten.Nicht streng erfaßbar ist bei Anwendung dieser Methode geradeso wie in den beiden anderen bereits durchgerechneten Fällen, wo es sich um einen rechteckigen oder kreisförmigen Nutenquerschnitt handelt, der Einfluß der Öffnungsweite des Nutenschlitzes in der Oberfläche des Nutenleiters. Ist er hinreichend schmal, so kann die Verteilung der maßgebenden magnetischen Feldkomponente als gleichmäßig angesehen werden. Bei genaueren Rechnungen müßte man über die Fourierkomponenten des Feldes der magnetischen Induktion im Nutenschlitz Bescheid wissen. Diese Annahme wird in der Arbeit gemacht.
Summary In this paper is reported on the distribution of an alternating current over the trapezoid crosssection of a metallic and sufficiently long conductor, who ist embedded in an infinitely permeable envelop up to a narrow air slit containing an alternating magnetic field, the feeler of the airgapfield between stator and rotor. The contour of the conductor with the trapezoid cross-section is composed here of two equally long opposite but divergent straight lines. The endpoints of which on the two ends are connected by two concentric circular arcs. The decisive partial differential equation for the field componentE z (, ) in the direction of the conductor corresponds to the two dimensional wave equation in cylinder coordinates.As in the two other cases which are already counted over conformal with this method, namely in the cases of the rectangular and circular cross-section, the influence of the width of the slit is not exactly to realise. In cases which call for more excit calculations, it would be necessary to have knowledge of the Fourier-components of the magnetic induction in the slits of the grooves.

Übersicht der Abkürzungen und der mathematischen Zeichen E die elektrische Feldstärke in V/m als Betrag des Vektors , - H die magnetische Feldstärke in A/m als Betrag des Vektors , - B die magnetische Induktion oder die Flußdichte in Vs/m2 als Betrag von , - 0 die magnetische Feldkonstante von der Größe 4·10–9 H/m, die elektrische Leitfähigkeit des Nutenleiters in S/m - =2f die Kreisfrequenz in 1/s - d=(2/0)1/2 das Eindringmaß in m - die imaginäre Einheit - eine besondere komplexe Konstante mit der Dimension 1/m - 2 die totale Winkelbreite des keilförmigen Nutenleiters - , ,z die drei Zylinderkoordinaten mit [, ,z] in m - i , a die Radien der oberen und unteren Begrenzungskreisbögen des Nutenquerschnitts von Bild 1 in m - 2 der doppelte öffnungswinkel zwischen den Zahnflanken - I (h )K r (h ) die beiden modifizierten Zylinderfunktionen mit dem Parameter - die beiden, in ihren Richtungen von abhängenden Einheitsvektoren im Zylinderkoordinatensystem - der dritte, stets parallel zurz-Achse gerichtete Einheitsvektor - D n die Koeffizienten in der maßgebenden Fourier-Entwicklung vonB (, ) in Gl. 2(9) mit der Dimension Vs/m (n=0, 1, 2 ...), - e jt das Gesetz der zeitlichen Strom- und Feldänderungen Mit 4 Textabbildungen  相似文献   

5.
Contents The aim of this paper is to determine, by means of the finite element method, the impedance of the bar filling the semi-closed slot of an electric machine. As an example the slot of complex shape was chosen for calculations. The analysis of that case by means exact methods would have been totally impossible. An accuracy of the method has been evaluated on the basis of published data. The two-dimensional skin effect was taken into considerations.
Anwendung der Methode der finiten Elemente in der Nut Impedanzen Berechnung
Übersicht Der Beitrag behandelt, mit Hilfe der Methode der finiten Elemente, die Bestimmung der Impedanzen von Leitern in der halbgeschlossenen Nut elektrischer Maschinen für den Fall kompliziert geformter Querschnitte, bei denen eine geschlossene analytische Berechnung unmöglich ist. Das Verfahren und die erreichbare Genauigkeit wird an einem Beispiel gezeigt, wobei die Stromverdrängung mit berücksichtigt wird.

List of Symbols A z-component of vector potential (complex r.m.s. value) - B t tangential component of induction - I=|I| ej0 complex value of current, |I|=r.m.s. value - imaginary unit - |z|,z * modulus of complex numberz and complex conjugate ofz - Re [z], Jm [z] real and imaginary part of complex numberz - angle of slot opening - R o d.c. resistance - magnetic permeability - conductivity - 2 scalar Laplacian - /n derivative in normal external direction - cross section area - S boundary of area - H Hilbert's space - H2 energetic space of a positive definite 2 - h region under triangulation - l h boundary of h - W 2 1 () Sobolev's space - S h subspace ofW 2 1 () - pulsation  相似文献   

6.
Die Ausgleichvorgänge durch Kreis- und Erdkapazitäten Bei den nachfolgenden Ausführungen handelt es sich um eine Fortsetzung des in Bd. 44 (1959) Heft 4 dieser Zeitschrift bereits erschienenen ersten Teiles Eine Theorie des Wechselstromkreises mit Lichtbogen.Bezeichnungen R 1 Ohmscher Widerstand von Trafo und Netzzuleitung - R 2 Ohmscher Widerstand des Lastkreises - R 3 Ohmscher Widerstand vorC 1 - R 4 Ohmscher Widerstand vorC 2 - R Kleinstmöglicher Widerstand der Verbindung zweier Stromkreise über ein Schaltgerät - Phasenwinkel der Spannung im Augenblick des Stromnulldurchganges bei metallisch geschlossenem Stromkreis - Phasenwinkel der Spannung im Augenblick des Stromnulldurchganges nach der Zündung bei Berücksichtigung vonL undR stattL undR - Phasenwinkel des Stromes im metallisch geschlossenen Stromkreis - Phasenwinkel des Stromes im metallisch geschlossenen Stromkreis vor der Zündung des Lichtbogens - 1 - 2 - Phasenwinkel der Ausgleichströme - tg - 1 - 2 - 2f (Kreisfrequenz beif=50Hz: =314) - 1 - 2 - z ges - z 4 - e b Lichtbogenspannung= (Die konstante induktive und ohmsche Komponente der Lichtbogenspannung ist bereits zu den StromkreiskonstantenL undR addiert) - u Spannungsabfall an einem lastseitigen Stromkreisglied Mit 5 Textabbildungen  相似文献   

7.
Contents In this paper, radial electrodynamic forces acting on a conductor entirely filling a semi-closed slot with elliptic cross section are investigated. The calculations have been made by using the Bubnow-Galerkin method. The results are compared with published data.
Elektrodynamische Kräfte auf einen Leiter mit Ellipsen-form in der Nut elektrischer Maschinen
Übersicht In diesem Artikel wurden die Kräfte untersucht, die auf einen Leiter mit Ellipsenform in halbgeschlossener Nut wirken. Die Berechnungen wurden mit der Bubnow-Galerkin Methode vorgenommen. Die Berechnungsergebnisse wurden mit Literaturangaben verglichen.

List of Symbols A z-component of vector potential (complex r.m.s. value) - B ,B normal and tangential components of the magnetic induction in the elliptic-cylindrical system of coordinates (r.m.s. value) - F electrodynamic force - F m , F a arythmetical mean and alternating components of the total force - J z-component of current density (complex r.m.s. value) - imaginary unit - 2a, 2b major and minor axis of ellipse - c distance of focus from center of cllipse - l conductor lenght - I=I ej complex value of current, |I|=r.m.s. value - z,z * modulus of complex numberz and complex conjugate ofz - Rez, Im z real and imaginary part of complex numberz - 1 angle of slot opening - conductivity - magnetic permeability - pulsation - cross section area  相似文献   

8.
Übersicht Ausgehend von der Beschreibung des magnetischen Feldes im Stirnraum elektrischer Maschinen wird die Induktion in den nichtleitend und hochpermeabel angenommenen Stirnraumwänden berechnet. Ferner wird versucht, die wirklichen Materialbeiwerte nachträglich zu berücksichtigen.
Contents The magnetic field in non-conductive and highly permeable walls of the end-region of electrical machines is calculated by means of the field in the air-part of the end-zone. In a second step the properties of real materials are considered.

Im Text verwendete Symbole a Vektorpotential - A , A, Az Komponenten des Vektorpotentials in der zyl. Maschine - A y, Az Komponenten d. Vektorpotentials im abgewickelten Modell - a radiale Bauhöhe des Stirnraums im abgewickelten Modell - a , az; ay, az dimensionslose Koeffizienten der - b , bz; by, bz Reihenwicklung des Strombleags - B , B, Bz Komponenten der Induktion in der zylindrischen Maschine - B y, Bz Komponenten der Induktion im abgewickelten Modell - c axiale Abmessung des Stirnraumes - c Ic VI Konstanten der homogenen Lösungen der Wandflüsse - d Id VI (die Indices kennzeichnen einzelne Wandzonen entsprechend Bild (B 2)) - d Eindringmaß - magnetische Feldstärke - i , i, iz Ströme - F Strombelag - J , J, Jz Komponenten des Strombelags - j , jz Strombelagsmaximum für ein Wicklungselement - Drehoperator - k, n Separationsparameter in der zyl. Maschine - l 0, m, n Separationsparameter im abgewickelten Modell - l komplexer Separationsparameter - p Polpaarzahl (=Separationsparameter i. d. zyl. Maschine) - R Reduktionsfaktor - |R| Betrag des Reduktionsfaktors - d Wegelement - u, v, w natürliche Zahlen - flußdurchsetzte Zone in den idealisierten Stirnraumwänden - elektrische Leitfähigkeit - Permeabilität - 0 Permeabilität des Vakuums - Grundwellenpolteilung im abgewickelten Modell - magnetischer Fluß - Kreisfrequenz Funktionen I p(k ) Besselfunktionen erster und zweiter Art - N p(k ) Besselfunktionen erster und zweiter Art - I p(n ) modifizierte Besselfunktionen erster und zweiter Art - K p(n ) modifizierte Besselfunktionen erster und zweiter Art - S u, p(k ) Hilfsfunktionen nach Lommel (L3) Koordinaten , ,z Zylinderkoordinaten - x, y, z cartesische Koordinaten - z 1,z 2,z 3 Einheitsvektoren für Zylinderkoordinaten - 1, 2; 1, 2;z 1 Koordinaten des Wicklungselementes mitj -undj -Strombelagskomponenten - 1; 1, 2;z 1,z 2 Koordinaten eines Wicklungselementes mitj -undj z-Strombelagskomponenten - 0 Wellenradius - 3 Außenwandradius hochgestellte Indices (i) ideell - (h) homogen - (p) partikular  相似文献   

9.
Inhaltsübersicht Die Aufgabe und ihre Daten—1. Das elektrische Strömungsfeld und das parasitäre elektrische Luftfeld: 1.1. Die formale Lösung für das elektrische Strömungsfeld; 1.2. Die Lösung der Aufgabe in Reihenform und der Zusammenhang mit der Methode der elektrischen Bilder; 1.3. Die Potentialfunktion des vom Strömungsfeld abhängenden elektrostatischen Feldes im Luftraumz0; 1.4. Die Berechnung der elektrischen Strömung i(±, z) aus der PotentialfunktionV(, ,z) und die Darstellung in Zylinderkoordinaten—2. Das Magnetfeld des Strömungsfeldes: 2.1. Die grundlegenden Integraldarstellungen für die drei Komponenten des Vektorpotentials; 2.2. Die drei inhomogenen und verkoppelten partiellen Differentialgleichungen für die drei Komponenten des Vektorpotentials, die HilfsfunktionU(, ,z) im FalleB z=0; 2.3. Die direkte Berechnung der KomponenteA z(, ,z) des Vektorpotentials; 2.4. Die direkte Berechnung der KomponentenA (, ,z) undA (, ,z) des Vektorpotentials aus den Integraldarstellungen; 2.5. Das Vektorpotential und das Magnetfeld der stromdurchflossenen Kabellänge zwischen den Punkten (±a,o,—h); 2.6. Der magnetische Feldanteil mitB z=0–3. Schlußbemerkungen.Physikalische Bedeutung der benutzten Symbole; Einheiten , ,z;x, y, z die Zylinderkoordinaten oder die kartesischen Koordinaten des Aufpunktes, - , ,z die Koordinaten des Quellpunktes oder des Wirbelpunktes; in beiden Fällen sind die Längen in m zu messen, - die elektrische Leitfähigkeit in S/m; Index 1 Wasser, Index 2 Erdkörper - h Abstand des Kabels von der Meeresoberfläche in m - H mittlere Tiefe des Meeres über die Länge des Kabels in m - 0 die Dielektrizitätskonstante der Luft - 0 die Permeabilität von Luft, Wasser, Erdkörper: - i elektrische Stromdichte in A/m2 - V Potentialfunktion in V - U das Vektorpotential in Vs/m - B die magnetische Induktion in Vs/m2 - qF die elektrische Flächenladung As/m2 Mit 2 Textabbildungen  相似文献   

10.
Übersicht Der im Aufbau einfache Spaltpolmotor erfordert zur Erklärung und Behandlung aller Erscheinungen ein umfangreiches Gleichungssystem. Aus den Spannungsgleichungen lassen sich über die Motorkenngrößen die Ströme und hieraus über die fiktiven Luftspaltfelder die Drehmomente ermitteln. Sättigungs-und Oberfeld-Einflüsse werden berücksichtigt. Die Wirkungen der Luftspaltfelder, wie Erzeugung von Drehmomenten, Stromwärmeverlusten, Luft- und Körperschall, werden ebenso behandelt wie die Verringerung der schädlichen Felder. Messungen an einem großen, stark ausgenutzten Motor bestätigen die abgeleiteten Gleichungen. Für die Untersuchung der Luftspaltfelder werden drei Verfahren benutzt. Die Arbeit schließt mit Auslegungsrichtlinien und Regeln für die Vorausberechnung.Übersicht der benutzten Formelzeichen Augenblickswert des Strombelags in A/cm - Augenblickswert der Induktion in Vs/cm2 - Diagrammvektor des Stromes in A - Totale Induktivität in Hy - Teilinduktivität in Hy - Gegeninduktivität in Hy - Augenblickswert der Radialkraftwelle in kp - Amplitude der Radialkraftwelle in kp - Diagrammvektor der Spannung in V - A Amplitude der Strombelagswelle in A/cm - B Amplitude der Drehinduktionswelle in Vs/cm2 - b Ständerabmessung in cm - C 1 Federhärte der Läuferwelle in kp/cm - c y Fourierkoeffizient fürv-tes Feld - d v Fourierkoeffizient fürv-tes Feld - E Effektivwert der EMK in V - e 2, 7182=Basis des natürlichen Logarithmus - e x Augenblickswert der an der Stelle induzierten EMK in V - F Amplitude der Felderregerwelle in A - F sp Wirksamer Durchtrittsquerschnitt der Meßspule in cm2 - f Frequenz in Hz - f() Augenblickswert der Felderregerkurve in A - g ganze Zahlen=1,2,3,... - I Effektivwert des Stromes in A - i Augenblickswert des Stromes in A - j - K Konstante - l Effektive, achsiale Länge des Blechpakets in cm - l m Mittlere Windungslänge in m - M Drehmoment in cmkp - N rel Relative Strahlungsleistung in W - n Umdrehungszahl in 1/min - n 0 Synchrone Drehzahl des Grundfeldes in 1/min - p Polpaarzahl des Grundfeldes - q Leiterquerschnitt in mm2 - R Läuferaußenradius in cm - R Gesamter Wirkwiderstand einer Wicklung in (gekennzeichnet durch , oder ) - Ordnungszahl (Polpaarzahl) der Radialkraftwelle - Teilwiderstand in (gekennzeichnet durch , oder ) - s Schlupf - t Zeit in s - t Polteilung in cm - U Effektivwert der Spannung in V - u Augenblickswert der Spannung in V - V Stromwärmeverluste in W - Windungszahl - Umfangskoordinate - Z Läufernutenzahl - s Schrägungswinkel - Geometrischer Luftspalt in cm (ohne Kennzeichnung) - Effektiver Luftspalt in cm (mit Kennzeichnung) - Räumlicher Winkel zwischen Haupt- und Spaltpol - Feldfaktor - 1 Resonanzüberhöhung - Spezifische elektrische Leitfähigkeitin m/mm2 - Ordnungszahl der Felder - Streuleitwert (mit Kennzeichnung) - Ordnungszahl der Oberströme - 0 4 °10–9 - str Relative magnetische Leitfähigkeit des Streublechs - v Polpaarzahl der Felder - 3,1415 - Ordnungszahl der Oberströme - Streufaktor (mit Kennzeichnung) - g Geometrischer Streukoeffizient des Läufers - Scheitelwert des magnetischen Flusses in Vs - Elektrischer Phasenwinkel - Kreisfrequenz in 1/s - A Anzugs- - ges. Gesamt- - i Bestimmter Wert - K Kipp- - L Luftspalt- - m Mittlerer Wert - N Nenn- - o Leerlauf, offener Läufer - p Grundfeld - R Läuferendring oder Wickelkopf - res. Resultierend - s Läuferstab- - sp Meßspule - str Streublech - Stelle - -tes Feld - -ter Erregerstrom - v v-tes Feld - -ter Erregerstrom - Streuinduktivität (ber und ) - -ter Erregerstrom - 1 r=1 - 12 Hauptopol-Läufer - 32 Spaltpol-Läufer - 13 Hauptpol-Spaltpol - 3p 3p-faches Feld - + Mitlaufende Komponente - – Gegenlaufende Komponente - = Gleichstrom - Hauptpol - Läufer - Spaltpol - Vektor Mit 25 Textabbildungen  相似文献   

11.
Microwave Studies on Strontium Ferrite Based Absorbers   总被引:1,自引:0,他引:1  
Single layer microwave absorbers based on strontium ferrite-epoxy composites have been fabricated and their reflection loss characteristics studied in the X-band (8–12.4 GHz) of microwave frequencies. Permittivity (rjr) and permeability (rjr) of Co and Ti added strontium ferrite SrCo x Ti x Fe12 – 2x O19 (x = 0.1 to 0.9 in steps of 0.2), have been measured. Thickness of the absorber is an important criterion influencing the absorption characteristics. Composites of 3 mm thickness are found to absorb over a reasonable range of X-band frequencies. A minimum reflection loss of –36.5 dB is observed for the composite with x = 0.3.  相似文献   

12.
Contents The paper presents a method of calculating the radial magnetic forces and pulsating torques in induction motors with integral and fractional stator slot winding and squirrel-cage rotors, which aims on reducing the forces of vibration and the noise level of electromagnetic origin. The method leads to a proper choice of stator and rotor slot numbers and other design data, which allow to avoid cases where force components of considerable value and frequencies in the resonant band of the motor are generated. Special attention is paid to the generation of time dependent (synchronous) parasitic torques and their frequencies. Finally the paper includes the experimental verification and presents a case of successful application in a high power motor.
Die Reduktion des Schwingungs- und Geräuschniveaus von Induktionsmotoren mit Ganzloch- und Bruchloch-Wicklung des Ständers
Übersicht Im Beitrag werden Methoden zur Berechnung von magnetischen Radialkräften und Oberschwingungsanteilen des elektromagnetischen Moments von Induktionsmotoren mit Ganzloch- und Bruchloch-Wicklungen des Ständers und Käfigläufern vorgestellt. Ziel der Berechnung ist die Reduzierung von Schwingungen und Geräuschen elektromagnetischer Herkunft.Diese Methoden helfen bei der Auswahl der Nutzahl von Ständer und Läufer sowie anderer Konstruktionsdaten. Damit können Oberschwingungsanteile von auftretenden inneren Kräften derart beeinflußt werden, daß Komponenten, die im Bereich der mechanischen Eigenfrequenz des Motors liegen, nicht auftreten. Besondere Aufmerksamkeit wird den frequenzabhängigen Oberschwingungsanteilen des Momentes gewidmet. Es werden experimentelle und theoretische Ergebnisse, die anhand eines Motors großer Leistung gewonnen wurden, gegenübergestellt.

List of main symbols k s ,k r stator and rotor winding factors - k sk skewing factor for -harmonic - N s ,N r number of stator and rotor slots - p number of pair-poles - q number of stator slots per pole and phase - s slip of rotor in respect to fundamental harmonic - angle around the rotor surface - airgap width - magnetomotive force (MMF) - magnetic conductance - integers denoting transformed rotor currents - integers assigned to harmonics (fundamental =p) - integers assigned to harmonics (fundamental =1) - r rotor position angle - 1,f 1 pulsation and frequency of supply voltage - angular speed of the rotor  相似文献   

13.
Contents A method of calculation the impedance of conductors in electric machine slots is presented. The calculations have made for conductors with elliptic cross section. The Bubnow-Galerkin method has been used for the calculations and the accuracy of the results obtained has been evaluated on the basis of published data.
Berechnung der Impedanz eines Massivleiters in einer elliptischen Nut
Übersicht Die Arbeit behandelt die Methode der Berechnung der Impedanz von Leitern, die in der Nut einer elektrischen Maschine eingebettet sind. Die Berechnung wurde für einen Leiter elliptischen Querschnittes durchgeführt. Die Genauigkeit der erhaltenen Ergebnisse wurde durch Vergleich mit der Fachliteratur kontrolliert.

Symbols A z-component of vector potential (complex rms value) - B t ,B tangential components of induction - complex value of current, |I|-rms value - imaginary unit - Z complex impedance - |z|,z * modulus of complex numberz, complex conjugate ofz - Rez real part of complex numberz - Imz imaginary part of complex numberz - magnetic permeability - conductivity - pulsation - 2 scalar Laplacian - 1 angle of slot opening - l conductor length - 2a, 2b major and minor axis of ellipse - c distance of focus from center of ellipse - cross-section area - S boundary of area - R resistance - X reactance  相似文献   

14.
Übersicht Das Spektrum des Luftspaltfelds ändert sich unter dem Einfluß der Sättigung der Eisenbereiche. Anhand numerischer Feldberechnungen wird gezeigt, daß zwischen der Sättigung im Zahn- und Jochbereich der Maschine prinzipielle Unterschiede bestehen und welchen Einfluß sie auf das Luftspaltfeld haben. Im Mittelpunkt der Untersuchungen stehen niederpolige Luftspaltfelder, der Einfluß der Sättigung auf nutharmonische Felder wird nur schlaglichtartig behandelt. Durch Verwendung bezogener Größen wird eine Übertragbarkeit der numerisch gewonnenen Ergebnisse angestrebt. Diese werden darüber hinaus mit den Ergebnissen eines verbreiteten analytischen Verfahrens verglichen.
On the influence of teeth and yoke saturation on the space-harmonics
Contents The spectrum of the magnetic field in the air gap of induction motors is influenced by the level of saturation of the magnetic circuit. This report deals with the effects of saturation, which are significantly different in case of yoke respectively teeth saturation. The research is done by means of numerical field calculations of a simplified model. The results are compared with a commonly used analytical approach. Beside of the reduction of the fundamental field the effects of saturation on the third and fifth space-harmonics are found to be most important. The effect on the slot harmonics is proved to be negligible for the model presented.

Formelzeichen a Breitenfaktor für Feldwelle mit der Polpaarzahl - b(x) resultierende Luftspaltinduktion - B J Maximalwert der Induktion im Joch - b Induktionsdrehwelle der Polpaarzahl - B Scheitelwert der Induktionsdrehwelle der Polpaarzahl - B L,m Mittelwert der Induktion im Luftspalt - B max Maximalwert der Induktion im Luftspalt - b p Induktionsdrehwelle, Grundfeld - B p Grundfeldinduktion, Scheitelwert - b s Nutöffnung - b z Zahnbreite - Z Z Induktion im zahnschaft, Scheitelwert - D a Ständeraußendurchmesser - D i Ständerinnendurchmesser (Bohrung) - H r Radialkomponente der magnetischen Feldstärke, Scheitelwert - H t Tangentialkomponente der magnetischen Feldstärke, Scheitelwert - k Sättigungsgrad, nur Sättigung im Zahnbereich - k c Carterscher Faktor - k c1 ,k c2 Carterscher Faktor, ständer/läuferseitig - k js Sättigungsgrad, nur Sättigung im Jochbereich - k S Sättigungsgrad - m 1 Strangzahl - N Nutzahl, Ständer - p Anzahl der Polpaare - r Radius - R J Radius, halbe Ständerjochhöhe - V magnetische Spannung, Scheitelwert - v(x) resultierende Felderregung - V Eisen magnetischer Spannungsabfall im Eisenbereich, Scheitelwert - V Joch magnetischer Spannungsabfall im Jochbereich, Scheitelwert - V Luft magnetischer Spannungsabfall im Luftspalt, Scheitelwert - V p Scheitelwert der Grundfelderregerwelle - v p (x) Drehwelle der Grundfelderregung - V Zahn magnetischer Spannungsabfall im Zahnbereich, Scheitelwert - w mittlere Spulenweite - x Umfangswinkel - Abplattungsfaktor - geometrischer Luftspalt - Ordnungszahl einer Leitwertwelle durch Nutung oder Sättigung - (x) resultierender magnetischer Leitwert, Sättigung unberücksichtigt - O konstanter Anteil des magnetischen Leitwerts, Sättigung unberücksichtigt - Scheitelwert einer Leitwertdrehwelle der Ordnungszahl - N Grundwelle des magnetischen Leitwerts durch Nutung, Scheitelwert - S(X) resultierender magnetischer Leitwert, Sättigung berücksichtigt - S,O konstanter Anteil des magnetischen Leitwerts, Sättigung berücksichtigt - S,2p Grundwelle des magnetischen Leitwerts durch Sättigung, Scheitelwert - S, magnetische Leitwertdrehwelle durch Sättigung, Scheitelwert - Polpaarzahl - r,Fe relative Permeabilität im Eisenbereich - Nut elektrische Durchflutung je Nut, Scheitelwert - p Durchflutungsgrundwelle, Scheitelwert - rel relative elektrische Durchflutung - N Nutteilung, Ständer - resultierender Wicklungsfaktor, Polpaarzahl - p resultierender Grundfeldwicklungsfaktor - S Sehnungsfaktor, Polpaarzahl - S,p Sehnungsfaktor des Grundfelds - Z, Zonenwicklungsfaktor, Polpaarzahl - Z,p Zonenwicklungsfaktor des Grundfelds  相似文献   

15.
Übersicht Die weitgehende Verwendung nichtmagnetischer Werkstoffe beim Bau von Turbogeneratoren mit supraleitender Erregerwicklung erfordert die Erarbeitung neuer theoretischer Grundlagen zur Vorausberechnung des Betriebsverhaltens. Mit Hilfe der Raumzeigerdarstellung wird ein den dynamischen Betrieb beschreibendes Differentialgleichungssystem für ein vereinfachtes mathematisches Modell der Maschine abgeleitet.
Contents The prevalent application of nonmagnetic materials in construction of turbine generators with superconducting field windings demands the development of new theoretical fundamentals for the predetermination of the operational behaviour. Using the definition of space vectors, for a simplified mathematical model of a generator a set of differential equations is presented, suitable for the calculation of transient performance.

Verzeichnis der verwendeten Symbole a Augenblickswert des Strombelags - g ganze Zahl - i Augenblickswert des Stromes - j imaginäre Einheit - J polares Massenträgheitsmoment - l Länge des geraden Wicklungsteils - L Eigeninduktivität - m Augenblicksert des Drehmoments - M Kopplungsinduktivität - P Grundwellenpolpaarzahl - r radiale Koordinate, Radius - R ohmscher Widerstand - u Augenblickswert der Spannung - v Augenblickswert des Vektorpotentials - W Spl Spulenweite, bezogen auf den mittleren Radius der Ständerwicklung - z axiale Koordinate - Z in Reihe geschaltete Leiter, Stabzahl der Käfigwicklung - räumlicher Winkel - Bogenkoordinate - 0 magnetische Feldkonstante - natürliche Zahl - Ordnungszahl - v1 vorzeichenbehaftete Ordnungszahl - natürliche Zahl - Wicklungsfaktor im geraden Wicklungsteil - p1 Polteilung, bezogen auf den mittleren Radius der Ständerwicklung - Augenblickswert des magnetischen Flusses - Augenblickswert der magnetischen Flußverkettung - 1 Ständerwicklung - 2 Erregerwicklung - 3 Dämpferwicklung - a außen - A Strang A - b Belastung - B Strang B - C Strang C - d Längsachse - i innen - J Joch - m mechanisch - o Oberschicht, oben - q Querachse - s Strombelag - St Stab - u Unterschicht, unten - natürliche Zahl - Ordnungszahl - v1 vorzeichenbehfaftete Ordnungszahl - natürlich Zahl Der Verfasser dankt Herrn Prof. Dr.-Ing. H. W. Lorenzen, Lehrstuhl und Laboratorium für Elektrische Maschinen und Geräte, TU München, für die Anregung und Förderung, dieser Arbeit. Sie dient als Voruntersuchung zum Thema Elektrische Grenzleistungssynchrongeneratoren mit supraleitender Erregerwicklung im Rahmen des Schwerpunktprogramms Neue Elektrische Antriebe der Deutschen Forschungsgemeinschaft, Bad Godesberg.  相似文献   

16.
Contents For high performance mixed analog/digital and ECL-CMOS applications the inside spacer, double poly bipolar structure has attracted most attention. Although this structure offers superior performance over it's outside spacer counterpart, a significant increase in the cost and complexity of the BiCMOS process is incurred especially when combined with trench isolation and composite material inside spacers. In this paper we examine different approaches for enhancing the performance of CMOS compatible outside spacer transistors opening up the possibility for lower complexity, high peformance BiCMOS processes. As a vehicle for this work we report on the integration of outside spacer bipolar transistors in a baseline digital 0.5 m, 3.3 Volt, triple level metal CMOS technology. Transistors with peakf T (extracted as gain bandwidth) of 17–18 GHz,BV ceo5 Volts and Early voltageV A of 25–30 Volts are reported. Future lateral and vertical scaling is expected to yield performance which compares favourably to more complex inside spacer processes.
Aspekte zur Optimierung von Outside Spacer Bipolartransistoren für eine leistungsfähige 0.5 m BiCMOS-Technologie für Analog-Digitalanwendungen
Übersicht Für leistungsfähige Analog-Digital-sowie ECL-CMOS-Anwendungen haben inside spacer Doppel-Polysilizium Bipolartransistoren die größte Aufmerksamkeit erzielt. Diese Transistoren besitzen, verglichen mit outside spacer Strukturen, hervorragende Eigenschaften. Allerdings beinhaltet diese Technologie eine wesentliche Steigerung der Kosten sowie der Komplexität des BiCMOS-Prozesses, insbesondere wenn Trench-Isolation und Doppellagenspacer angewandt werden. In diesem Artikel werden verschiedene Methoden zur Leistungssteigerung von CMOS-kompatiblen outside spacer Transistoren untersucht, was Möglichkeiten für weniger komplexe, aber leistungsfähige BiCMOS-Prozesse eröffnet. Untersuchungsobjekt für diese Arbeit ist die Integration von outside spacer Bipolartransistoren in eine 0.5 m – 3.3 V-Standard-CMOS-Technologie für Digitalanwendungen mit Dreilagenmetallisierung. Es werden Transistoren mit einer cut-off-Frequenz (Verstärkungs-Bandbreiten-Produkt) von 17–18 GHz, einer Kollektor-Emitter-Durchbruchspannung (BV ceo) von 5 V und einer Earlyspannung von 25–30 V vorgestellt. Von zukünftigem lataralen und horizontalen scaling werden Transistoreigenschaften erwartet, die sich mit denen von Transistoren der komplexeren inside spacer-Technologien vergleichen lassen.


This work was carried out with the support of the ESPRIT 8001 TIBIA project. The authors would also like to thank G. Vancuyck and F. Vleugels for stimulating discussions and assistance with measurements and analysis.  相似文献   

17.
Übersicht In der vorliegenden Arbeit wird das Magnetfeld eines vom Strom durchflossenen elliptischen Leiters untersucht, der entweder von Eisen oder von Luft umgeben ist, und das Feld eines Stromfadens in einer geschlossenen elliptischen Nut ermittelt. Zur Lösung aller dieser Fälle wird die konforme Abbildung benutzt, die eine leichte Ermittlung der Feldkomponenten gestattet. Mit Hilfe näher abgeleiteter Beziehungen werden die Feldbilder für alle obenerwähnten Fälle errechnet.Übersicht der benutzten Formelzeichen I Leiterstrom - = z Leiterstromdichte in derz-Ebene - Leiterstromdichte der -Ebene - 0 Permeabilität des Leiters oder des Nutinneren - 2 Permeabilität des Nuteisens - a, b Halbachsen der elliptischen NutE p oder des elliptischen LeiterquerschnittesE p - Lineare Exzentrizität der EllipseE p - x p,y p Koordinaten der EllipseE p - p , p Den Koordinatenx p, yp zugeordnete Koordinaten der -Ebene - M Abbildungsmodul - A Vektorpotential - H x,H y Feldstärkekomponenten im kartesischen Koordinatensystem derz-Ebene - H ,H Feldstärkekomponenten im elliptischen Koordinatensystem derz-Ebene - H , H Feldstärkekomponenten im kartesischen Koordinatensystem der -Ebene - IndexI Innengebiet des Leiters oder der Nut - IndexII Außengebiet des Leiters oder der Nut - x 0,y 0 Koordinaten des Stromfadens derz-Ebene - Koordinaten des Stromfadens der -Ebene Mit 10 Textabbildungen  相似文献   

18.
Übersicht Es wird in dieser Arbeit die Anwendung der Bessel-Transformation und der Fourier-Transformation zur Berechnung des Magnetfeldes gerader Stromleiter von verschiedenem Querschnitt vorgeschlagen. Die Leiter erstrecken sich in beiden Richtungen bis ins Unendliche, und die Aufgabe wird zweidimensional betrachtet. Die Permeabilität wird dabei im ganzen Raum als konstant angenomen.
Contents The authors suggest the application of Bessel and Fourier transforms to calculate the magnetic field of simple wires of different. The wires are assumed to be infinitely long and the problem is considered two-dimensional. Magnetic permeability is assumed to be constant.

Verzeichnis der verwendeten Symbole A Vektorpotential - B magnetische Induktion - C(n, ) Funktion der Veränderlichenn und - F Kraft pro Längeneinheit - I Strom - j(r, ), J Stromdichte - J m (r ) Zylinderfunktion der Ordnungm mit einem Argumentr - L Induktivität pro Längeneinheit - a, b, c, e, R Abmessungen - f(x) Funktion der Veränderlichenx - r, , z Zylinderkoordinaten - x, y, z kartesische Koordinaten - Winkel - nm Kronecker-Symbol - 0 Permeabilität des leeren Raumes  相似文献   

19.
Übersicht Nach der Entwicklung der Feldkurve in eine Fourierreihe und der Darstellung der Magnetisierungskurve in Form eines Potenzenpolynoms werden die Gleichungen des magnetischen Kreises aufgestellt. Die Lösung dieses Gleichungssystems mit Hilfe eines Digitalrechners ermöglicht die Berechnung des Magnetisierungsstromes auf Grund der Magnetisierungskurve ohne Benutzung etwaiger Hilfskurven. Die Rechenwerte werden mit Meßwerten verglichen.
Contents On the basis of harmonic analysis of the air-gap field the equations of magnetic circuit in induction motor are developed. The solution of these equations by means of digital computer enables to determine the magnetizing current without the use of additional curves. The magnetization characteristic of electric sheet is represented in the calculations as a series with different exponents of induction. The calculated values of magnetizing current and of the third harmonic of phase e.m.f. are compared with the measured values.

Bezeichnungen B L Induktion im Luftspalt - B j Induktion im Joch - B z Induktion im Zahn - c Zahnbreite - D Durchmesser der Ständerbohrung - h j Jochhöhe - h z Zahnhöhe - k c Carterscher Faktor - k E Eisenfüllfaktor - l Eisenlänge - l i Ideelle Maschinenlänge - R 1 Wirkungswiderstand der Ständerwicklung - V L magnetische Spannung im Luftspalt - V j magnetische Spannung im Joch - V z magnetische Spannung im Zahn - Windungszahl eines Stranges der Ständerwicklung - Luftspaltlänge - Wicklungsfaktor der Ständerwicklung - Polteilung - z Zahnteilung (Nutteilung) Indices 1 bezieht sich auf den Ständer - 2 bezieht sich auf den Läufer - n betrifft das Glied des Potenzenpolynoms (2) mit der Potenzn der Induktion - i Ordnungszahl des Gliedes im Potenzenpolynom  相似文献   

20.
Routine clinical NMR scanners apply low-flip-angle gradient-echo sequences as fast-imaging modalities. Fast low-angle shot (FLASH) NMR imaging is the first version of a large family of fast gradient-echo methods. It is based on the application of reduced flip angles for NMR excitation, the acquisition of magnetic field gradient echoes, and considerably shortened repetition times. Under these conditions, transverse magnetization survives. This magnetization can be destroyed in spoiled FLASH or used for imaging in refocused FLASH. The measuring time of FLASH NMR images is dependent on gradient hardware and is under optimal technical conditions user selectable between less than 100 ms and 1 s. Short imaging times give the possibility to apply magnetization preparation before imaging. This technique allows the acquisition of image contrast with respect to any selected parameter, e.g.T 1 T 2, or diffusion constant. This FLASH version has been called snapshot-, turbo-, or magnetization-prepared RAGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号