首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
This paper reports an empirical study that tested the usefulness of Web-based four-dimensional (4D) construction visualization in collaborative construction planning and scheduling. Several recent construction projects have employed 4D visualization to better understand the construction schedule and make proactive decisions to prevent logical errors in the construction sequence. Other groups have shown that construction information management with asynchronous Web-based communication can improve decision making among dispersed industry practitioners. It seems reasonable to anticipate that combining 4D visualization with Web-based information management would facilitate dispersed industry practitioners to make collaborative decisions for construction planning and scheduling. The empirical study presented here reports how experiment participants at separate locations collaboratively detected logical errors in a construction schedule when the 4D visualization model of the schedule was represented on the Web browser. Our results show that teams using 4D models detected logical errors more frequently, faster, with fewer mistakes, and with less team communication, than teams using 2D drawings and bar charts. These findings show industry practitioners empirical evidence that Web-based 4D construction visualization can improve team collaboration on construction planning and scheduling.  相似文献   

2.
3.
This research compares the work process at a construction site with the original construction schedule using point-cloud records that were retrieved using a long-range 3D laser scanner. The comparison was used to quantify the differences as a reference for the verification and modification of the original building design. This study compared 4D computer models with 3D clouds of a campus building. The differences could easily be identified from the perspectives and elevations of different views. To determine the degree of progress more precisely, a slice of clouds was defined to show the differences when compared with a cross section of a computer model. The format of the point cloud provided a new way to inspect construction progress.  相似文献   

4.
Four-dimensional (4D) computer-aided design (CAD) has been credited with improving construction planning procedures. The integration of three-dimensional CAD with schedule information has enabled the effective detection of design and planning flaws in many construction projects. However, the benefit of 4D CAD has been centered on architectural constructions, as other areas such as civil infrastructure have seldom been the target of 4D CAD application. This paper presents a case study in which a cable-stayed bridge construction was analyzed and modeled using the 4D graphic simulation approach. The cable-stayed bridge was chosen for the case study because it suitably represents the complex nature of modern civil infrastructure. 4D CAD models were developed at three different levels of detail: activity, discrete operation, and continuous operation. The clear definitions of the three levels of detail of 4D CAD and their application results for the cable-stayed bridge are presented herein.  相似文献   

5.
Areas of Application for 3D and 4D Models on Construction Projects   总被引:1,自引:0,他引:1  
In recent years more and more construction projects used three-dimensional/four-dimensional (3D/4D) models to support management tasks. However, project managers still struggle with evaluating how the 3D/4D model technology can be most efficiently applied on their specific project. One main reason for this struggle is that an account about how 3D/4D models have been used in the past is missing. This paper offers practitioners and researchers such an account of the application areas of 3D/4D model technologies including the purposes for which these technologies have been applied. The paper qualitatively aggregates the results of 26 case studies of 3D/4D model applications on construction projects to show researchers and practitioners how 3D/4D models have been applied to address project challenges. Using a “project challenge—3D/4D model application” matrix the paper explains each application area and describes why the application has been beneficial to the case study projects. The paper then analyzes the challenges that practitioners have faced with 3D/4D models on the test case projects. The main findings of this analysis are that practitioners on most of the test case projects have used the models for only one application area. The paper suggests that further research on the integration of 3D/4D model technologies into work and business processes of project teams is needed to address this opportunity for a more widespread use of 3D/4D models throughout the lifecycle of a project.  相似文献   

6.
Construction activities need space on the jobsite for their execution. Workers, equipment, materials, temporary facilities, and the developing structure share the limited jobsite space during the construction period. Multiple types of spaces for different purposes on various locations are required to execute various activities at different times. Hence, space planning helps provide a safe and productive environment. Planners mentally link two-dimensional (2D) drawings and execution schedules to generate dynamic multiple types of space requirements, which is a complex task. Therefore, researchers suggest the use of four-dimensional (4D) modeling and building information modeling (BIM) for space planning. Both simulate the construction process by linking the execution schedule with a three-dimensional (3D) model to visualize the construction sequence in space planning. However, both still lack features such as topography modeling and geospatial analysis, which affect space planning. In this work, 4D geographic information systems (GIS) were used for space planning that facilitates topographic modeling, different types of geospatial analyses, and database management. GIS was also used to generate multiple types of spaces corresponding to various activities. A feature attribute table (FAT) associated with each space describes when, where, and how long that space will be required on the jobsite. GIS-based area topology was implemented through a set of validation rules that define how working areas have to share the jobsite. A GIS-based methodology that enables space planning, time-space conflict identification, and conflict resolution prior to the construction was developed and implemented.  相似文献   

7.
This paper concludes that 4D models are a useful alternative to project scheduling tools like CPM networks and bar charts. They enable more people to understand a schedule quickly and identify potential problems. By developing a 4D model for a commercial construction project, we were able to detect the incompleteness of the original schedule, find inconsistencies in the level of detail among the schedule activities, and discover an impossible schedule sequence. We were also able to anticipate potential time-space conflicts and accessibility problems. The results of the case study show that 4D models are effective in evaluating the executability of a construction schedule. The case study also highlighted the need for improvements to 4D tools. 4D tools should include bar charts, component lists, and annotation tools in their graphical user interface. Automating schedule data preparation and 4D model generation in the design stages of a project can expedite 4D model development and use. Users need to be able to generate 4D models at multiple levels of detail and generate and evaluate alternative scenarios rapidly.  相似文献   

8.
To provide a safe and productive environment, project managers need to plan for the work spaces required by construction activities. Work space planning involves representing various types of spaces required by construction activities in three dimensions and across time. Since a construction schedule consists of hundreds of activities requiring multiple types of spaces, it is practically impossible to expect project managers to specify manually the spatiotemporal data necessary to represent work spaces in four dimensions. This paper presents mechanisms that automatically generate project-specific work spaces from a generic work space ontology and a project-specific IFC (industry foundation class) based 4D production model. The generation of these work spaces leads to a space-loaded production model. Within this model, work spaces are represented as being related to the relevant construction activities and methods and as having attributes that describe when, where, and how long they exist, and how much volume they occupy. These space-loaded production models enable richer 4D CAD simulations, time-space conflict analysis, and proactive work space planning prior to construction.  相似文献   

9.
Field construction can be planned, monitored, and controlled at two distinct levels: (1)?the activity or schedule level; and (2)?the operation or process level. Graphical three-dimensional (3D) visualization can serve as an effective communication method at both levels. Many research efforts in visualizing construction are rooted in scheduling. They typically involve linking activity-based construction schedules and 3D computer-aided design (CAD) models of facilities to describe discretely evolving construction product visualizations (often referred to as four-dimensional CAD). The focus is on communicating what components are built where and when, with the intention of studying the optimal activity sequence, spatial, and temporal interferences. The construction processes or operations actually involved in building the components are usually implied. A second approach in visualizing construction is rooted in discrete-event simulation that, in addition to visualizing evolving construction products, also concerns the visualization of the operations and processes that are performed in building them. In addition to what is built where and when, the approach communicates who builds it and how by depicting the interaction between involved machines, resources, and materials. This paper introduces the two approaches and describes the differences in concept, form, and content between activity level and operations level construction visualization. An example of a structural steel framing operation is presented to elucidate the comparison. This work was originally published in the proceedings of the 2002 IEEE Winter Simulation Conference. This paper expands on the original work by describing recent advances in both activity and operations level construction visualization.  相似文献   

10.
Described in this paper is a novel approach to four-dimensional (4D) computer-aided design (CAD). It involves a two-way symbiotic relationship between three-dimensional (3D) CAD software and a software implementation of linear planning that includes the ability to define a project product model and associate it with the process model. Strengths of the approach include the ability to readily modify construction sequences and examine their consequences using 4D CAD, and the ability to treat very large scale projects marked by significant repetition of their components. By building on a shared image of the project product model from both a design and construction perspective, the CAD model can be structured in a way that facilitates communication with the scheduling software and vice versa. Various challenges involved in making the 2-way process work are described, including consistency of product representation in the CAD and scheduling models, and the need to group CAD components at different levels of detail and locations to reflect the kinds of aggregation found in schedule representations of a project. The benefits of the approach include the ease with which different scheduling strategies can be explored and visualized, the links between 3D objects and activities can be maintained, and the completeness of the product model representations can be validated. A case study is used to illustrate the approach adopted and the challenges involved.  相似文献   

11.
12.
Integrated product and process models have started gaining acceptance in the construction industry and it is conceivable that in the near future project data will be contained in these models. A project model can contain large data sets making it harder for users to navigate. This challenge is even more difficult in cases where mobile computing is used on site for accessing and collecting data needed for a construction management task. Navigational models are constructs that provide construction personnel, who are using mobile computing applications on construction sites, with information and data collection support relevant to their tasks and environments. Navigational models provide a flexible and dynamic way of grouping and structuring entities of product and process models such that those entities that need to be related for one task are linked directly to minimize the navigation through a given model. Moreover, navigational models provide a way to structure the data contained in product and process models in hierarchies facilitating interaction with entities at multiple levels of detail. In this paper, we describe construction site-based project management tasks and demonstrate how navigational models can facilitate efficient data access and data collection processes by customizing the presented information for a given task and environment of a user.  相似文献   

13.
New technologies, new materials, and innovative designs have been extensively adopted in Beijing Olympic venues construction. The extreme requirements for time deadline and competition function expose the venues construction to high risks. These risks would potentially bring negative impacts on the site safety performance. Meanwhile, there is a lack of systematic management for safety risks in China’s construction industry, especially for large projects such as the Beijing Olympic venues construction. This paper identifies and assesses safety risk factors inherent in Beijing Olympic venues construction with the involvement of 27 experienced and highly respected experts from government agencies, the construction industry, and academe through brainstorming, workshop discussions, and questionnaire surveys. The finding reveals that more than half of the critical safety risk factors are from contractors and subcontractors such as: lack of emergency response plan and measures; workers’ unsafe operation, and contractors ignoring safety under schedule pressure. Based on these critical safety risks, a risk register is composed and a model is developed in application of the analytic hierarchy process to assess the status of risks on site safety. The model has been attempted in two Olympic venue projects under construction and the validity has been approved. The risk checklist, register, and assessment model developed in the paper were integrated into the risk management system that has been used for Beijing Olympic venues construction.  相似文献   

14.
Several efforts have been made by many researchers to develop a model for schedule and cost integration in construction projects, but it is difficult to integrate and manage schedule and cost in an actual construction site using such a model. The integrated schedule and cost model developed in this study (1) enables the planning and control of repetitive construction processes and (2) can be used by a project manager in an actual construction site. Furthermore, an integrated schedule and cost model for the core wall construction, which is an important repetitive process in the recently booming high-rise building construction in terms of scheduling, was developed using the integration model developed in this study. It is expected that the integrated schedule and cost model developed can allow project managers to integrate the schedule and cost of repetitive construction processes more effectively and support the project managers’ decision-making.  相似文献   

15.
Dynamic three-dimensional (3D) animation can be of significant value in improving the verification validation, and communication of discrete-event simulation (DES) models of construction operations, which in turn can make the models more credible and thus useful in operations planning and decision making. This paper presents research that led to the design and implementation of practical 3D animation methods to visualize multiply-articulated construction equipment in 3D animations of simulated construction operations. Using principles of forward and inverse kinematics, the writers designed and implemented generic virtual pieces of articulated construction equipment that accept task-level instructions from external software processes. DES models can configure and instantiate specific pieces of such equipment and instruct them to perform construction tasks using simple parametric text statements that embody a construction work-like terminology. Once instructed to perform specific tasks (e.g., load soil), these “smart” pieces of equipment (e.g., backhoes) automatically decipher the sequence and amplitudes of the elemental motions their components (e.g., boom, stick) must undergo to accomplish those tasks. The animation methods are implemented in a software tool called KineMach that integrates as an add-on with the VITASCOPE visualization system.  相似文献   

16.
Risk management is an important part of construction management, yet the risk-based decision support tools available to construction managers fail to adequately address risks relating to cost, schedule, and quality together in a coherent framework. This paper demonstrates the usefulness of the Advanced Programmatic Risk Analysis and Management Model (APRAM) originally developed for the aerospace industry, for managing schedule, cost, and quality risks in the construction industry. The usefulness of APRAM for construction projects is demonstrated by implementing APRAM for an example based on an actual building construction project and comparing the results with other risk analysis techniques. The results show that APRAM simultaneously addresses cost, schedule, and quality risk together in a coherent, probabilistic framework that provides the information needed to support decision making in allocating scarce project resources.  相似文献   

17.
This paper was written to fill a void created by the absence of fundamental principles of site construction management. Efficient material management is essential to managing a productive and cost efficient site. For more than 25?years, the senior author has been observing and writing about inefficient labor productivity practices resulting from poor site material management. Using deductive reasoning, fundamental principles were developed to avoid poor practices. A construction site should be portioned into three areas or zones: semipermanent (exterior) storage, staging areas, and workface (interior) storage. Each has a unique function relative to site material management. Using these areas as a framework, fundamental principles are stated and illustrated using a case study project accompanied by numerous photographs and narratives.  相似文献   

18.
The estimating process of pile construction productivity and cost is intricated because of several factors: unseen subsurface obstacles; lack of contractor experience; site planning; and pile equipment maintainability. This study intends to assess cycle time, productivity, and cost for pile construction considering the effect of the above factors using regression technique. Data were collected through designated questionnaires, site interviews, and telephone calls to experts in different construction companies. Many variables have been considered in the pile construction process. Seven regression linear models have been designed and validated to assess productivity, cycle time, and cost. Consequently, three sets of charts have been developed based upon the validated models to provide the decision maker with a solid planning, scheduling, and control tool for pile construction projects. This research is relevant to both industry practitioners and researchers. It provides sets of charts and models for practitioners’ usage to schedule and price out pile construction projects. In addition, it provides the researchers with the methodology of designating regression models for the pile construction process, its limitations, and future suggestions.  相似文献   

19.
Construction requirements represent the key preconditions for construction. These include topological precedence, key resources, space requirements, etc. Consequently, identifying them is necessary for feasible construction planning to be achieved. Despite this, little attention has been given to the impact of construction requirements on a project schedule, possibly because of the lack of a good tool for representing these requirements. This paper distinguishes construction requirements into static and dynamic types, according to changes in the need of the requirement during its life cycle. A modeling framework, PDM++, is then proposed. The framework deals with schedule constraints arising from both static and dynamic construction requirements, provides greater semantic expression to capture schedule constraints unambiguously, and facilitates the representation of interdependent conditional relationships. The concept of meta-intervals is also devised to represent complex requirements involving several activities and schedule constraints, and it facilitates modeling at higher levels of plan abstractions. Finally, an illustrative case study is presented to show the applicability of PDM++ in representing schedule constraints and alternative scheduling from a construction requirements perspective.  相似文献   

20.
The need to match project managers’ (PMs) performance measures onto projects of both unique and similar characteristics has long since been acknowledged by researchers. The need for these measures to reflect the various phases of the project life cycle has also been contended in the recent past. Here, a competency-based multidimensional conceptual model is proposed for mass house building projects (MHBPs). The model reflects both performance behaviors and outcome in predicting the PMs’ performances at the conceptual, planning, design, tender, construction, and operational phases of the project life cycle. Adopting a positivist approach, data elicited for the construction phase is analyzed using multiple regression techniques (stepwise selection). Out of a broad range of behavioral metrics identified as the independent variables, the findings suggest the best predictors of PMs’ performances in MHBPs at the construction phase are: job knowledge in site layout techniques for repetitive construction works; dedication in helping works contractors achieve works schedule; job knowledge of appropriate technology transfer for repetitive construction works; effective time management practices on house units; ability to provide effective solution to conflicts, simultaneously maintaining good relationships; ease with which works contractors are able to approach the PM and volunteering to help works contractors solve personal problems. ANOVA, multicollineriality, Durbin–Watson, and residual analysis, confirm the goodness of fit. Validation of the model also reflected reasonably high predictive accuracy suggesting the findings could be generalized. These results indicate that the model can be a reliable tool for predicting the performance of PMs in MHBPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号