首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
利用无针头电极丝式静电纺丝机制备聚酰胺(PA6)纳米纤维膜材料。研究了静电纺工艺条件对PA6纳米纤维膜形貌及直径的影响,探讨了纤维膜力学性能与直径的关系。结果表明,电极丝静电纺丝装置能高效制备光滑、连续、均匀的纳米纤维膜;纤维直径与纺丝液质量分数呈正比关系,质量分数在12%左右时静电纺丝效果最好;当电压为70 k V时,纤维直径最小且分布较集中;接收距离的增加改善纤维直径的均匀性;直径的减小提高膜断裂强度的同时也降低伸长率。  相似文献   

2.
静电纺丝法纺制聚乳酸纳米纤维无纺毡   总被引:8,自引:0,他引:8  
采用静电纺丝法制备了生物降解聚乳酸(PLLA)纳米纤维无纺毡。分析了纺丝液浓度、电压、接收距离、挤出速度等因素对纤维形态的影响。结果表明:纺丝液的浓度和挤出速度对纤维直径的影响较为明显,溶液挤出速度增大,所得纤维微孔含量及尺寸也增大;适当的电压和接收距离有利于收集无液滴纤维;随着纤维直径的减小,无纺毡的孔径呈减小趋势。在PLLA质量分数为5.7%、挤出速度0.8 mL/h、接受距离 15.5 cm、电压8 kV的静电纺丝条件下,可制备纤维直径为200-400 nm的PLLA纳米纤维无纺毡。  相似文献   

3.
以聚乳酸(PLA)为原料,分别用三种不同的溶剂制得三种纺丝液并采用静电纺丝法,制备了聚乳酸纳米纤维。探讨了溶剂、电压、溶液质量分数对纤维形貌和直径的影响。结果表明,溶剂是决定PLA超细纤维形成的关键因素,三氯甲烷(CHC l3)与二甲基甲酰胺(DMF)混合溶剂(体积比为9∶1)是PLA静电纺丝较为理想的溶剂。在PLA质量分数为6%、极距15 cm、电压25 kV,流量2.5 mL/h的工艺条件下,可制备直径为1 200 nm左右的PLA纤维。  相似文献   

4.
《合成纤维工业》2016,(3):45-47
以聚乙烯醇(PVA)为原料,以芦丁为改性剂,将PVA与芦丁共混于去离子水中,通过静电纺丝制备抗紫外PVA/芦丁纳米纤维膜,并对其性能进行表征。结果表明:静电纺丝工艺条件为电压20 k V,纺丝速度0.5 m L/h,接收距离10 cm,温度30℃;加入少量芦丁,对PVA静电纺丝成纤性无影响,但纤维直径增大,直径均匀性变差;纤维中PVA与芦丁之间存在氢键;相对PVA,芦丁质量分数为4.76%时,PVA/芦丁纳米纤维膜的纤维平均直径为302 nm,抗紫外系数大于40,具有良好的抗紫外性能。  相似文献   

5.
采用熔喷法及热轧处理制备醋酸丁酸纤维素(CAB)非织造布;然后以体积比6:4的丙酮与乙酸为溶剂,通过静电纺丝制备CAB纳米纤维并沉积在熔喷CAB非织造布表面,制得静电纺/熔喷CAB复合膜;对复合膜的孔径、过滤效率和透气性进行测试。结果表明:当纺丝溶液CAB质量分数为30%,纺丝电压为18 kV,喂液速率为0.2 mL/h,接收距离为21 cm时,静电纺CAB纳米纤维平均直径及直径变异系数最小,分别为359 nm和16.06%;熔喷CAB非织造布的孔径主要分布在10μm左右,对1μm气溶胶粒子的过滤效率为51.393%,在使用?8喷嘴时透气率为1 856 mm/s;静电纺/熔喷CAB复合膜的孔径分布在1.7~2.2μm,对1μm气溶胶粒子的过滤效率达96.433%,在使用?8喷嘴时透气率为735 mm/s;相比熔喷CAB非织造布,静电纺/熔喷CAB复合膜的最大孔径、最小孔径、平均孔径均减小,孔径分布区间相对较窄,过滤效率提高,透气率下降。  相似文献   

6.
采用四氢呋喃和无水乙醇为溶剂,利用静电纺丝法制备了聚己内酯(PCL)/聚乙二醇(PEG)共混纳米纤维。研究了共混配比、溶液浓度、无水乙醇的加入以及电纺电压、接收距离等工艺参数对纤维形态和性能的影响。测试结果表明:聚乙二醇和聚己内酯以一定比例共混后改善了聚己内酯纤维毡的亲水性和细胞相容性;随着纺丝原液浓度增加,电纺产品由高分子微/纳米液滴结构渐变为珠状结构较少的平滑纤维,平均纤维直径逐渐增大;一定范围内,纤维平均直径随电压的上升而增大,但与接收距离关系不大;此外,加入无水乙醇后,共混溶液电导率增加,有利于喷射流的劈裂,减少了珠状结构的数量。  相似文献   

7.
聚乳酸纤维的静电纺丝及其形态结构研究   总被引:3,自引:0,他引:3  
采用二氯甲烷为溶剂,以滚筒为收集装置,利用静电纺丝法制备了聚乳酸纳米纤维。分析了溶液体系和滚筒转速对纤维形态结构的影响。结果表明:在质量分数相同的条件下,采用相对分子质量较大的聚乳酸切片所纺纤维直径细而均匀;质量分数增加时,电纺丝产品由一些高分子微/纳米液滴渐变为成形较好、珠状较少的平滑纤维,其平均纤维直径先增加后减小;控制收集滚筒的转速在一定范围内,可以获得排列取向较好的纤维。  相似文献   

8.
利用一对带有异种电荷的对称共轭喷丝头,通过静电纺丝法制备了几种聚合物的连续排列有序的微/纳米纤维,并与常规静电纺丝方法制备的纳米纤维进行了比较。结果发现:利用对称共轭电纺法制备的纤维的直径比常规电纺法制备的要大2~3倍,而且纤维具有良好的排列有序性;而用常规方法制备的纳米纤维则是无规排列的。扫描电子显微镜(SEM)被用来表征制备的微/纳米纤维和纳米纤维膜。  相似文献   

9.
采用静电纺丝法制备聚氨酯纤维非织造布,借助扫描电子显微镜分析了静电纺丝液的浓度、纺丝电压和纺丝液挤出速率等因素对纤维直径及形貌和结构的影响.结果表明,在纺丝液固体质量分数8%~12%、纺丝电压32.5~37.5 kV、纺丝液挤出速率0.8~2.4 mL/h范围内,能纺制出 直径分布在250~1000nm之间的聚氨酯纤维...  相似文献   

10.
利用静电纺丝技术制备聚乙烯醇(PVA)纳米纤维材料,通过正交试验调节制备过程中纺丝电压、纺丝距离和纺丝溶液浓度等工艺参数,探究其对PVA纳米纤维直径大小、直径分布以及纤维形貌的影响。结果表明,影响纳米纤维形貌的主要因素排序是纺丝溶液浓度>纺丝距离>纺丝电压,并确定最优水平组合为纺丝电压为20 kV,PVA纺丝溶液浓度为6 %(质量分数,下同),纺丝距离为12 cm。  相似文献   

11.
以聚乙烯醇(PVA)为原料、去离子水为溶剂,通过静电纺丝制备PVA纳米纤维膜,利用正交实验探讨静电纺丝过程中纺丝液PVA浓度、纺丝距离、纺丝电压和注射速度对PVA纳米纤维膜形貌及纤维直径的影响,得出制备纤维膜的较佳工艺条件,并分析了纺丝液PVA浓度对纤维膜的力学性能和亲水性能的影响。结果表明:随着纺丝液PVA浓度的增加,PVA纤维的直径逐步变小,直径分布变窄;当纺丝液PVA质量分数为7%、纺丝电压为14 kV、纺丝距离为14 cm、注射速度为0.5 mL/h时,纤维膜的纤维直径最小,为203 nm;正交实验中PVA浓度、纺丝电压、纺丝距离、注射速度4个因素的极差值分别为87.00,49.67,18.33,11.67;纺丝液PVA质量分数从5%增加到7%,纤维膜的断裂强度从2.21 MPa提高至2.81 MPa,断裂伸长率从31.63%提高至56.39%,水接触角从37.7°提高至48.7°。  相似文献   

12.
静电纺丝(电纺)技术是一种制备直径为数10 nm到数100nm纳米纤维的有效方法.本文介绍了静电纺丝中原料聚合物的类型、纺丝条件和纺丝技术等方面的研究成果,电纺纳米纤维和产品的特性及其应用.  相似文献   

13.
刘呈坤 《合成纤维》2008,37(6):48-52
碳纤维技术最重要的一个目的是获得小直径的碳纤维,这样将会改善纤维的力学性能以及获得更大的比表面积。静电纺能够制备直径跨越几个数量级(从微米到纳米)的聚合物纤维。研究了利用乳液聚合获得的高分子质量聚丙烯腈(PAN)/二甲基甲酰胺(DMF)溶液,通过静电纺制备最小直径纳米纤维的最优化工艺,并确定了拜里数、接收距离、纺丝角度以及电场强度与PAN纳米纤维的关系。  相似文献   

14.
采用静电纺丝技术制备了聚乙烯吡咯烷酮/二苯基丙氨酸(PVP/FF)复合纳米纤维;考察了FF含量、纺丝液流速对电纺纤维形貌及其平均直径的影响;利用扫描电镜对纤维表面形态进行了观察,通过X射线衍射和热重分析考察了纳米纤维中FF的存在状态及纳米纤维的热稳定性;通过全反射红外光谱分析了FF与PVP之间的相互作用。结果表明:当复合纤维中FF质量分数小于2%时,共混溶液的可纺性较好;复合纳米纤维直径随着FF含量的增大而先减小后增加,当FF的质量分数增加到5%时,复合纳米纤维的直径也相应增大;随着纺丝液流速的增大,复合纳米纤维的直径有逐渐增大的趋势,当纺丝液流速在0.2~0.6mL/h时,复合纳米纤维形貌较佳,纤维直径分布均匀,表面光滑无颗粒;PVP/FF复合纳米纤维中FF与PVP发生复合作用处于分散的无定形状态,分解温度范围变宽;FF与PVP之间具有良好的相容性。  相似文献   

15.
纳米级纤维具有优良的机械性能和高比表面积等特性。以静电纺特殊结构纳米纤维为研究对象,根据其表观形态分别介绍了一维特殊结构纳米纤维、二维特殊结构纳米纤维膜、三维结构纳米纤维气凝胶等,并阐述了各种结构的形成机理。总结了近年来国内外采用静电纺丝技术制备特殊结构纳米纤维的调控方法,如改变溶液性质(溶液浓度、黏度、表面张力、电导率等)、纺丝工艺参数(纺丝电压、流量、喷丝头、环境温湿度等)及后处理方式(高温煅烧、水热合成等)等。简要阐述了静电纺特殊结构纳米纤维的应用领域,并对其未来发展进行了展望。  相似文献   

16.
以N,N-二甲基乙酰胺为溶剂配制聚乳酸(PLA)溶液,采用静电纺制备PLA纳米纤维,探讨PLA溶液浓度、纺丝电压、接收距离对PLA纳米纤维形貌、直径及其分布的影响。结果表明:当PLA溶液浓度为10%、纺丝电压为24kV、接收距离为20cm时,纺丝效果好,纤维平均直径约91nm,且直径分布较均匀。  相似文献   

17.
采用静电纺丝法在18~32kV、PVP/Zn(CH3COO)2前驱体浓度为15%、20%、24%和28%,纺丝距离为6~15cm的条件下,制备了直径为200~500nm的微纳米纤维。通过扫描电子显微镜(SEM)分析得出在纺丝电压为25~28kV,纺丝距离为10~12cm,溶液质量浓度为24%时纺出的微纳米纤维结构较为均一。  相似文献   

18.
利用静电纺丝技术制备了具有微孔结构的聚醚酰亚胺(PEI)纳米纤维,在此基础上采用同轴共纺技术获得了有机玻璃/聚醚酰亚胺(PMMA/PEI)纳米复合纤维,考察了不同的纺丝工艺参数对PEI和PMMA/PEI纤维形貌的影响. 实验结果表明,在低浓度下单纺可获得直径0.05~0.5 mm的PEI微孔纳米纤维,使用同轴共纺技术能获得表面光滑的PMMA/PEI复合纳米纤维;经过4 MPa压置处理10 min的复合纳米纤维薄膜的拉伸强度随PEI含量的增加有所提升.  相似文献   

19.
利用静电纺丝法制备了超细聚ε-己内酯(PCL)纤维;借助扫描电镜仪和差示扫描量热仪表征了PCL纤维的形态与热性能;研究了电纺过程中溶液浓度、电压、接收距离和纺丝速度对纤维形态的影响。结果表明:当纺丝电压为10 kV,接收距离为15 cm,纺丝速度为2 mL/min时,纺丝液中PCL质量分数为6%~12%能获得连续无串珠的纤维;纺丝电压为8~12 kV,电纺过程稳定;接收距离对纤维的直径和形貌无明显影响;与流延成型的PCL膜相比,电纺PCL纤维具有较低的结晶度。  相似文献   

20.
静电纺丝(简称电纺)技术是一种制备聚合物纳米纤维的新方法,它可制备出直径为纳米级的超细纤维,最小直径可至1 nm。电纺法制备聚合物纳米纤维具有设备简单、操作容易、成本低廉以及高效等优点,它是目前能直接连续制备聚合物纳米纤维的有效方法。本文介绍了电纺过程、原理及影响纤维性能的主要因素,综述了电纺技术在生物医学材料,复合增强纤维,无机纳米纤维等方面的应用进展,最后对电纺技术在制备聚合物纳米纤维方面的发展前景作出了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号