首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
将超级导电炭黑Super-P(SP),碳纳米管(CNT)和石墨烯(GN)任取2种等比例添加到LiNi0.5Co0.2Mn0.3O2中制备扣式电池,探究二元导电剂对电池性能的影响,此外设立单一导电剂SP作为对照组。采用X射线衍射仪分析导电剂的结构,并使用扫描电镜分析导电剂的形貌,此外还测试了电池的电化学性能。添加质量分数为3% GN/SP二元导电剂的电池首次放电比容量最高,为181.1 mAh/g; 添加质量分数为3% CNT/GN二元导电剂的电池循环性能最好,0.2 C循环100周容量保持率为76.2%;添加质量分数为3% CNT/SP二元导电剂的电池倍率性能最优,阻抗最低。结果表明,二元导电剂对电池性能的提升能力均优于单一导电剂SP。   相似文献   

2.
主要以石墨烯(Gen)、导电炭黑Super-P(SP)以及复合导电剂石墨烯/导电炭黑(Gen/SP)为研究对象,将LiNi0.5Co0.2Mn0.3O2作为正极材料,通过制备浆料、涂布、卷绕等工艺,分别制备了单一导电剂SP、Gen,以及不同质量比复合导电剂Gen/SP的软包电池。采用XRD、SEM和恒流充放电等测试手段,研究了不同含量的导电剂与正极颗粒的复合情况,以及对电池性能的影响。结果表明,复合导电剂含量为1.0%时,电池性能最优;复合导电剂含量为0.5%时,电池性能最差。复合导电剂的电池性能优于单一导电剂,含量为1.0%的复合导电剂Gen/SP (5∶5,w/w)制备的软包电池性能最优,0.1 C首次放电比容量为160.38 mAh/g,0.5 C循环100次后容量保有率为97.3%。  相似文献   

3.
主要以石墨烯(Gen)、碳纳米管(CNTs)及其二者的复合材料石墨烯/碳纳米管(Gen/CNTs)为研究对象,将其以不同的含量、比例添加在LiNi0.5Co0.2Mn0.3O2中,制备了一系列软包电池。通过XRD、SEM、电化学性能等测试研究了不同导电剂与正极材料结合情况,以及导电剂含量配比对锂离子电池性能的影响。结果表明:电池的性能与导电剂含量密切相关,并且复合导电剂的性能优于单一导电剂。在石墨烯/碳纳米管比例相同的情况下,随着导电剂添加量增加,电池的内阻显著降低,放电容量、倍率性能、循环性能均得到改善。导电剂为1.5%Gen/CNT (3/7,质量比)时,0.2 C下放电比容量可达163.2 mAh/g,在5 C下放电比容量仍可达85.5 mAh/g,其循环性能也最好,1 C循环200次后,容量保持率可达103.12%。  相似文献   

4.
本试验研究以NiSO4溶液、MnSO4溶液、CoCl2溶液、NaOH溶液及络合剂为原料制备前驱体镍钴锰复合氢氧化物Ni0.5Co0.2Mn0.3(OH)2,采用球磨法将前驱体与碳酸锂均匀混合后再高温煅烧合成了形貌不规则的LiNi0.5Co0.2Mn0.3O2。经测定,该锂离子电池正极材料为-NaFeO2结构,PH值为11.18,首次循环放电的比容量为167.5mAh/g(电流密度30mA/g,2.5-4.3V),库伦效率为88.9%,表明利用球磨法合成的LiNi0.5Co0.2Mn0.3O2具有较低的PH值和较高的放电比容量。  相似文献   

5.
锂离子电池(LIBs)是最普遍的储能设备之一,高镍LiNi0.92Co0.04Mn0.04O2正极因其放电比容量高而备受关注,然而,在长循环的过程中,由于正极表面的活性物质发生了化学和结构变化,LIBs的能量存储能力会随着循环的进行而减弱。理解和缓解这些退化机制是减少容量衰退的关键,从而提高锂离子电池的循环寿命。包覆是常见的改性手段,可改善高镍LiNi0.92Co0.04Mn0.04O2正极界面稳定性并降低表面降解的程度。但是,常规包覆方法形成的包覆层的厚度和均匀性难以调控,为了改进此问题,本研究建立了一种Al2O3/LiAlO2薄膜,对LiNi0.92Co0.04Mn0.04O2具有协同改性效应,可形成厚度均匀的双包覆层,增强正极材料的循环性能和结构稳定性。研...  相似文献   

6.
用CVD法制备碳纳米管,通过强酸超声处理后溶解在N-甲基吡咯烷酮(NMP)中制备成碳纳米管导电浆料,利用XRD,SEM,BET考察了制备的碳纳米管导电剂浆料的结构和表面形貌,并考察了其作为导电剂对LiNi0.8Co0.1Mn0.1O2锂离子电池电化学性能的影响;研究结果表明经过王水处理后的碳纳米管获得了更好的分散性,并且得到了更多的介孔。添加了碳纳米管导电浆料的电池首次放电比容量是186.1 mAh/g,而未添加碳纳米管导电浆料的电池首次放电比容量是181.2 mAh/g。添加了碳纳米管导电浆料的电池循环性能更好,100次循环容量保持率是95.95%;添加了碳纳米管导电浆料的电池大倍率性能优越,在2C、3C、5C倍率下要明显高于单独用SP做导电剂的电池(1 C=180mA/g)。并且,添加碳纳米管导电浆料的电池电极界面阻抗要小。   相似文献   

7.
解决镍基正极材料LiNi0.8Co0.1Mn0.1O2的电化学循环稳定性和高温循环性能是其产业化推广应用的关键。研究了掺杂铌改性高镍正极材料,优化材料的电化学性能,提升循环稳定性。首先以硫酸盐为原料,在N2保护气氛下,采用共沉淀法合成三元球形Ni0.8Co0.1Mn0.1(OH)2前驱体,通过高温固相反应与LiOH·H2O,Nb2O5合成Li(Ni0.8Co0.1Mn0.11-xNbxO2(x=0,0.01,0.02,0.03)系列正极材料。X射线衍射结果表明,Nb5+离子可少量进入正极材料晶格,并在正极材料表面形成化学稳定性好的Li3NbO4。当x=0.02时,在室温25 ℃,电压2.75~4.2 V,0.2 C倍率下首次放电比容量为172.9 mAh/g,100次循环后容量保持率为97.47%,在50 ℃,0.5 C倍率下循环20次容量基本不变,平均放电比容量为183.7 mAh/g,且该样品具有较好的倍率性能。   相似文献   

8.
采用共沉淀法合成镍钴锰氢氧化物前躯体,使其和碳酸锂混合均匀后,高温焙烧合成锂离子正极材料LiNi0.5Mn0.3Co0.2O2,研究了掺杂Al(OH)3对材料循环性能的影响.用X射线衍射和扫描电镜对合成的粉末进行了表征,用电性能测试仪研究了材料的电化学性能.研究发现:温度为850 ℃时焙烧的材料具有最优的电性能,1C电流初始放电比容量达到157.2 mAh/g(2.75~4.2V),循环50次放电比容量保持率为94.8 %,循环100次材料的放电比容量保持率为90.1 %.通过少量掺杂Al(OH)3的电池材料结晶性有所提高,晶型趋于完整,但是材料的放电比容量有所降低,前100次循环掺杂对材料循环稳定性无显著改善效果.   相似文献   

9.
采用共沉淀法制备添加了La3+的LiNi0.8Co0.15Al0.05O2正极材料, 通过XPS、X射线分析仪、扫描电镜、电化学工作站、电池充放电测试系统详细地探讨了不同添加量的La3+对材料的结构、形貌和电化学性能的影响。结果显示, 与无添加的LiNi0.8Co0.15Al0.05O2正极材料比较, 添加了La3+的材料一次颗粒尺寸更大, 球形度更好且材料的电极Rsf+Rct阻抗均显示有所降低; 当添加x=0.01时, 材料的大电流循环稳定性得到了较大提升, 1 C条件下经过100次循环后, 添加La3+材料容量保持率为75.81 %, 而未添加材料容量保持率只有49.57 %; 添加了La3+材料制得的电池在0.5、1、5 C倍率下的放电比容量也要明显高于无添加材料。   相似文献   

10.
高镍三元正极材料以其能量密度高的特性成为目前动力型锂离子电池主流正极材料之一,但目前高镍三元材料存在循环稳定性较差、大倍率充放电性能较差等问题,限制了其规模化应用。三元材料的单晶化可以有效降低循环过程中的颗粒间微裂纹产生,结合表面包覆可有效提高高镍三元正极材料的循环稳定性。同时,高价阳离子掺杂可有效提高锂离子传输速率,提高高镍三元材料的倍率充放电性能。本文采用高温固相法制备W6+、Zr4+共掺杂和H3BO3、Al2O3双包覆的高镍单晶LiNi0.83Co0.12Mn0.05O2材料,并探究其电化学性能的变化。在3.0~4.3 V电压范围内,与未掺杂材料相比,W-Zr共掺杂的LiNi0.83Co0.12Mn0.05O2在不同放电倍率下具有更好的电化学性能;采用H3...  相似文献   

11.
在“碳达峰碳中和”战略目标下,新能源产业受到国家政策的大力扶持,我国锂电新能源产业迅猛发展,作为新能源汽车核心部件的锂离子电池的产量及报废量持续增加。废旧三元锂电池含大量的有价金属和危险废物,对其综合回收利用兼具经济和环境效益。传统火法工艺存在能耗高、锂损失率大、污染重等缺点,而常规湿法工艺亦存在流程长、净化工序复杂、锂综合回收率低、废水量大等问题。现阶段研究多以LiNi0.5Co0.2Mn0.3O2(NCM) 三元正极材料为研究对象,而针对新型含铝特斯拉电池物料的回收鲜有报道,因此以典型的特斯拉三元正极材料LiNi0.815Co0.15Al0.035O2(NCA) 为原料,以碳和氢气为还原剂,采用“还原焙烧转型-选择性提锂”工艺对废旧锂电池中的锂进行选择性提取回收,并从还原焙烧及浸出方式、能耗和环保等方面进行对比。结果表明:采用碳还原焙烧选择性提锂工艺,在碳含量为15.0%、温度为700 ℃、焙烧时间为90 min的条件下,Li、Ni、Co、Al的提取率分别为97.84%、0.45%、0.36%、0.75%;采用氢还原焙烧选择性提锂工艺处理NCA物料,转型温度较低,在相同焙烧时间下,在焙烧温度500 ℃、氢气流速300 mL/min的条件下,Li提取率为95.97%,Al的提取率为8.65%,Ni、Co提取率均小于0.5%,同时产物中无CO、CO2等污染气体产生。因此,氢还原焙烧具有较大的工业应用潜力。   相似文献   

12.
采用共沉淀-高温固相法制备LiNi1/3Mn1/3Co1/3O2正极材料,利用XRD和SEM对所制试样的晶体结构和形貌进行表征,研究了烧结温度对材料电化学性能的影响.结果表明,焙烧温度为850 ℃制备的材料具有较好电化学性能,在25 ℃,电压范围为2.75~4.2 V,1 C充电6 C放电下首次放电比容量为124.2 mAh/g,50次循环后容量保持率为95.2 %.   相似文献   

13.
采用溶胶凝胶法合成LiNi0.8Co0.1Mn0.1O2正极材料。探究不同的锂配比、不同的烧结温度对正极材料的形貌和电化学性能的影响。电化学性能测试结果表明:当锂过量13%,烧结温度为800 ℃时电化学性能较优,其首次放电比容量达179.89 mAh/g,0.2 C循环20次后容量保持率为94.72%,且此时材料的电极极化程度最小,晶体结构最稳定,循环可逆性也最好。XRD、TEM的分析结果说明:LiNi0.8Co0.1Mn0.1O2正极材料具有较好的结晶性,且有良好的a-NaFeO2层状结构,做出的材料形貌为不规则块状。   相似文献   

14.
基于LiNi0.8Co0.1Mn0.1O2正极材料在高电压下的电化学性能不佳问题,通过简单的共沉淀法得到前驱体Ni0.8Co0.1Mn0.1(OH)2,与适当的Na源、Zr源及Li源球磨后得到改性材料。通过对比Na和Zr单掺杂或共改性来探究改性材料电化学性能的变化。XRD结果表明,掺杂Na和Zr后,所有改性材料的Li间距和过渡金属层间距均扩大,电化学性能测试发现改性后的材料其循环、倍率性能等均得到明显提升。其中Na、Zr共改性的LiNi0.8Co0.1Mn0.1O2(NCM-Na-Zr),其循环和倍率性能得到显著改善,在2.75~4.35 V、1C倍率下循环200次后,仍然有177.4 mAh/g放电比容量和87.7%的容量保持率。   相似文献   

15.
成本低、性能稳定的无钴镍锰正极材料是目前的研究热点。采用共沉淀法制备Ni0.8Mn0.2(OH)2前驱体, 用氨水作为络合剂, 探究了NH3浓度对前驱体Ni0.8Mn0.2(OH)2共沉淀的晶粒生长和形貌的影响, 以及对锂离子电池正极材料LiNi0.8Mn0.2O2的晶体结构和电化学性能的影响。通过X射线衍射仪、扫描电镜、循环伏安测试、交流阻抗和电池充放电测试系统表征材料的结构、形貌和电化学性能。表征结果显示, 在0.1 C, 2.5~4.2 V化成条件下, 初始放电比容量为167 mAh/g, 充放电效率为96%。当氨水用量为45 mL时, 样品具有较优的循环性能, 在1 C倍率下, 2.5~4.2 V的电压测试范围内, 循环100次后, 放电比容量为139 mAh/g, 容量保持率为93.9%。在低倍率充放电条件下样品具有明显优于其他材料的电化学性能。   相似文献   

16.
为提高正极材料LiNi1/3Co1/3Mn1/3O2的循环性能, 采用氢氧化物共沉淀法对前驱体进行Mg掺杂, 再经过混锂、球磨、高温煅烧后, 分别对掺杂与未掺杂的正极材料进行了XRD、SEM及电化学性能的比较.研究结果表明:掺杂与未掺杂的正极材料都为标准的α-NaFeO2型层状结构, 粒度大小无明显变化; 对于掺杂量为0.03与未掺杂的正极材料, 首轮放电比容量分别为138.2 mAh/g和145.3 mAh/g; 而循环50轮的放电比容量则分别为131.1 mAh/g和119.5 mAh/g.由此可见, 通过Mg掺杂, 正极材料的首轮放电比容量虽有少量降低, 而循环性能却有明显增强.   相似文献   

17.
采用共沉淀-高温固相法合成单晶LiNi0.83Co0.1Mn0.07O2正极材料。采用XRD,SEM和恒流充放电等测试手段对材料的晶体结构、形貌和电化学性能等进行研究。测试结果表明,材料形成形貌良好的单晶颗粒,Li+/Ni2+离子混排程度较低,材料具有良好的a-NaFeO2层状结构。在2.75~4.3 V下,扣式电池0.1 C首次放电比容量达209.63 mAh/g,库仑效率为91.19%,0.2 C循环100次后容量保持率为100.09%。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号