首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着城市轨道交通曲线段线路增多,曲线轨道的环境振动问题逐渐引发社会关注。以曲线整体式轨道为例,利用双重傅里叶变换和围道积分推导移动简谐荷载下曲线轨道的挠度响应解答,研究曲线轨道的频散特性及空间振动特性。研究表明,曲线轨道的自振频率与频散曲线的最小频率接近,约等于单自由度质量-弹簧系统的自振频率计算值。当扣件阻尼为欠阻尼时,轨道挠度随荷载频率升高先增大后减少,最大值在自振频率位置,当扣件阻尼过大时,轨道挠度随频率升高不断减少。在满足曲线轨道最小曲线半径的要求下,列车速度对曲线轨道竖向挠度的影响很小,径向挠度则随列车速度的增加先减小后增大,存在一个理想车速使得径向挠度为零。增加曲线半径对竖向挠度无影响,但会引起原理想车速范围内径向挠度增大和最大扭转角值减少,增加超高角对竖向挠度也无影响但可以有效减少径向挠度。研究对于曲线轨道的减振设计具有一定的参考价值。  相似文献   

2.
将曲线轨道视作周期性轨道结构,根据周期性结构的振动特性,可将荷载作用下曲线轨道钢轨动力响应的求解问题转化在一个基本元之内进行。通过引入移动谐振荷载作用下曲线轨道钢轨的数学模态,得出了曲线轨道钢轨频域响应的级数表达。在频域内采用模态叠加法表示钢轨的弯曲及扭转变形,进而求解得出钢轨的频域动力响应。经研究发现:移动荷载作用下曲线轨道钢轨响应显著的频段位于荷载激励频率附近,随着荷载移动速度的增加,荷载激励频率附近一个很窄频段内的位移响应将有所减小,但其它大部分频段内的位移响应将显著增大;随着荷载移动速度的增加,移动谐振荷载引起的钢轨响应峰值变化不大,但响应显著的持续时间变短;离散支承引起的参数激励受速度的影响显著;采用曲线梁模型模拟曲线轨道钢轨所得垂向动力响应结果与直梁模型基本一致,可以采用直梁模型近似研究曲线轨道钢轨垂向动力响应;当对曲线轨道钢轨进行精细化建模分析时,曲线半径对曲线钢轨扭转振动有一定程度的影响,需采用曲梁模型研究曲线轨道钢轨动力响应。  相似文献   

3.
为探究轨道梁的曲线半径对跨座式单轨车桥耦合系统振动的影响,基于拉格朗日动力学方程式,在考虑柔性轨道梁的情况下,采用UM建立跨座式单轨的车桥耦合系统。研究通过设置固定曲线超高率,改变轨道梁曲线半径和行车速度来分析不同曲线半径的轨道梁对单轨车桥耦合系统的影响。分析结果发现:100 m曲线半径的轨道梁,其竖向振动位移和车体质心竖向位移对车辆速度的变化较敏感,稳定轮和导向轮在大超高率和速度变化较大时,左右侧轮胎径向力出现较大差异,将使轮胎磨损,并且车辆通过性差。曲线半径为200 m~300 m时,轨道梁和车体的振动幅值变化小,导向轮与稳定轮两侧受力均衡,10%超高设置适中。当曲线半径更大时,在固定超高情况下,车体离心力减小,车体出现内倾趋势,两侧稳定轮和导向轮的径向力出现明显差异,车辆长期行驶在此工况下也会导致两侧轮胎磨损不均。综合分析,曲线超高随曲线半径的增大而减小,可使车辆具有良好的通过性。  相似文献   

4.
建立曲线轨道解析模型,此轨道模型考虑为具有周期性离散弹簧-阻尼支承的曲线Timoshenko梁。在频域内将曲线钢轨的位移及转角表达为轨道模态的叠加,并将周期性结构理论施加于轨道模型的运动方程,进而在一个基本单元内高效地求解轨道的动力响应。将横向固定谐振荷载作用于钢轨轨头,考虑不同扣件刚度、扣件阻尼、扣件间距及曲线半径,研究上述轨道参数对曲线轨道位移响应的影响。经计算分析可知:钢轨轨头的横向位移响应包括平面内和平面外的位移响应,是钢轨平移和扭转效应的叠加;增加扣件刚度或减小扣件间距可导致轨道系统一阶自振的频率增大,而其幅值减小,对于一阶自振频率以下的频段,钢轨位移幅值也有所减小;随着扣件阻尼的增大,一阶自振的幅值显著下降,对于pinned-pinned共振,随着扣件阻尼的增加,跨中处的钢轨位移增大,而扣件上方的位移有所减小;pinned-pinned共振频率随着扣件间距的增大而减小,而其位移幅值增大;对于曲线地铁轨道,曲线半径对钢轨的横向位移基本没有影响,但对竖向位移影响显著,随着曲线半径的增加,钢轨竖向位移幅值显著下降。  相似文献   

5.
将曲线轨道视为周期性离散支承结构,根据周期性结构的振动特性,将曲线轨道动力响应的求解问题转化在一个基本元之内进行研究,将固定谐振荷载视为速度为零的移动谐振荷载,通过引入移动谐振荷载作用下曲线轨道钢轨的频域数学模态及广义波数,得出曲线轨道钢轨扭转振动频域响应的级数表达。在频域内采用模态叠加法表示钢轨的扭转振动,进而求解得出不同激振频率下钢轨的扭转振动频域响应,得到曲线轨道扭转振动频率响应函数。针对曲线轨道扭转振动频响特性,分析了扣件支点扭转刚度、扭转阻尼系数、扣件支点间距以及曲线半径等因素对频响函数的影响。  相似文献   

6.
27 t轴重的侧架交叉支撑转向架和副构架径向转向架是中国最近研制的两种重载货车转向架。为研究比较两转向架的曲线性能,分析曲线几何参数、轨道谱激励对不同类型转向架轮轨动力的影响特性,综合考虑转向架结构形式、技术参数和重载曲线轨道相关要求,建立重载货车⁃轨道耦合动力学模型和曲线参数化模型。结果表明,副构架径向转向架曲线性能在小半径曲线(≤800 m)线路上具有相对优势,曲线半径越小,优势越明显,但增大曲线半径和施加线路谱激励均会弱化其优势;两种转向架对外轨超高和缓和曲线长度变化的动力响应趋势基本一致,都在欠超高(0~15 mm)范围内轮轨综合响应较小;缓和曲线长度对两者均存在拐点,且拐点近乎相同,如当速度为80 km/h,曲线半径为800 m时,计算拐点都是约50 m,与TB 10627—2017《重载铁路设计规范》标准中规定的缓和曲线长度最小取值一致。  相似文献   

7.
采用半解析方法研究了层状饱和地基-轨道-列车耦合系统的动力响应问题。层状饱和地基由任意水平饱和土层和下卧饱和半空间组成,轨道采用以无限长欧拉梁模拟的钢轨、连续质量块模拟的轨枕和Cosserat模型模拟的道砟组成的三层系统,列车模拟为弹簧和阻尼元件连接的多刚体系统。振动输入由钢轨的竖向不平顺提供。通过地基表面轨道中心处竖向位移与道砟位移相等实现层状饱和地基和轨道的耦合,通过在车轮与钢轨间引入Hertizian接触弹簧来实现轨道与列车的耦合,首先求得频率-波数域内解答,然后通过Fourier逆变换求得时间-空间域内振动响应。文中验证了方法的正确性,并进行了数值计算分析,研究表明钢轨不平顺引起的列车动荷载振动频率较低时,随着列车运行速度的增大地基表面位移幅值逐渐增大;振动频率较高时,列车运行速度对位移幅值峰值的影响不明显,但列车驶过后地基的振动明显增大,振动时间变长。  相似文献   

8.
建立垂向安装有具有两阶自振频率的调频式钢轨阻尼器(Tuned Rail Damper,TRD)的曲线轨道频域解析模型。将此曲线轨道视为离散支承的无限周期结构,引入周期无限结构理论,结合频域模态叠加法,通过求解轨道某“基本元”内一点的动力响应,进而得到安装有TRD的曲线轨道上任意位置处的动力响应。对安装TRD的曲线轨道动力特性进行计算分析可知:TRD能够显著降低曲线轨道在TRD自振频率附近频段内的振动响应并有效抑制曲线轨道的pinned‑pinned共振;安装TRD后,曲线轨道钢轨振动衰减率明显增大;TRD对不同半径曲线轨道的动力响应均具有一定的抑制作用;移动谐振荷载作用下,当荷载激振频率大于轨道自振频率时,安装TRD的曲线轨道时域振动响应被不同程度地抑制,当荷载激振频率与TRD自振频率一致时,轨道的振动响应显著降低。  相似文献   

9.
为研究中低速磁浮最小曲线半径及缓和曲线长度,该文基于磁浮交通线路参数的计算方法、相关要素,以及线路自身的特点,推导出适用于中低速磁浮的曲线半径、缓和曲线长度计算公式,在参考相关标准的基础上,对中低速磁浮列车以20~160 km/h速度运行时的最小平、竖曲线半径及缓和曲线长度进行了理论分析,进一步给出其建议值,并建立了考虑主动反馈控制特性的车辆模型,通过动力学仿真对取值的可靠性进行了验证。研究结果表明:最小平曲线半径取值受指向外侧的最大侧向加速度控制,最小竖曲线半径取值受凹曲线上最大法向加速度控制,当列车运行速度一定时,横坡角越大,最小平曲线半径取值越小,而纵坡对最小竖曲线半径取值几乎无影响;当横坡角为2°,列车在正常条件下运行时,最小缓和曲线长度主要受最大侧向冲击控制,在困难条件下运行时,最小缓和曲线长度主要受最大法向冲击控制,当横坡角为4°、6°,列车在正常/困难条件下运行时,最小缓和曲线长度主要受最大法向冲击控制;按横坡角最大值6°考虑,列车以160 km/h在正常条件下运行时,建议最小平曲线半径及缓和曲线长度分别取970 m、120 m。该文研究成果可为中低速磁浮交通的选线设计提...  相似文献   

10.
建立曲线轨道解析模型,研究扣件刚度、扣件阻尼、扣件间距以及曲线轨道半径对钢轨振动衰减率的影响规律。轨道模型考虑为具有周期性离散支承的曲线Timoshenko梁,在频域内,将曲线钢轨的位移及转角表达为轨道模态的叠加,进而求解固定谐振荷载作用下曲线轨道的平面内和平面外动力响应。由于此轨道模型为无限周期性结构,将周期性结构理论应用于轨道模型的运动方程,可以在一个基本元内高效地求解轨道的动力响应。利用此模型计算固定谐振荷载作用下曲线钢轨的速度频响函数,据此计算钢轨的振动衰减率。经计算分析可知:在2 000 Hz以内,扣件刚度对钢轨振动衰减率有一定的影响,随着扣件刚度的增加,钢轨振动衰减率增大;对于100 Hz以上频段,扣件阻尼对钢轨振动衰减率有非常显著的影响,增加扣件阻尼可以显著提高钢轨振动衰减率;如果考虑全频段的钢轨振动衰减率,0.6 m扣件间距要优于0.4 m和0.8 m扣件间距;对于铁路轨道或城市轨道交通的轨道,曲线轨道半径变化对钢轨振动衰减率没有影响。  相似文献   

11.
轨道交通具有运载量大、次数多等优点,而这也给其结构的服役安全性带来一定挑战。轨道结构在长期运营后可能出现扣件松动、失效等情况,造成列车通过时的响应增大,影响其抗疲劳性能,甚至危及列车的运营安全性。为研究扣件失效对于地铁列车-轨道动态性能的影响,结合有限元方法和多体动力学方法建立地铁列车-轨道结构耦合动力学模型,采用已有文献结果对其进行对比验证,进而分析不同扣件失效数量及不同地铁列车速度作用下的钢轨动态响应。结果表明:该地铁列车-轨道结构耦合动力学模型的计算结果与现有文献吻合良好,模型的准确性得到验证;不同车速下,扣件失效数量的增加在一定程度上会增大钢轨加速度;钢轨横向位移最大值并非随车速增加而增大,而是随扣件失效数量的增加而增大;钢轨垂向位移最大值均随扣件失效数量的增加而增大,为保证地铁列车运行安全,须确保扣件失效数量不超过三个。  相似文献   

12.
建立考虑多车效应的重载列车-轨道系统精细化动力分析模型,对车辆、钩缓装置中各种细部构件及部件间接触摩擦等作用机制进行精细模拟,基于Hertz理论及FASTSIM算法进行轮轨接触计算。利用自主研发设备通过现场参数试验进行轨道建模。深入研究重载铁路曲线地段列车-轨道系统动力性能及曲线参数影响规律。结果表明,缓和曲线地段轮轨相互作用规律复杂,列车不同位置车轮受力呈现迥异变化趋势及幅度,前后缓和曲线轮轨相互作用亦完全不同,主要由超高顺坡及车辆构造所致;缓和曲线长度过短可导致超高顺坡过大不利列车运行,缓和曲线长度对动力性能影响曲线往往存在拐点,建议以拐点值限定最小缓和曲线长度;增长缓和曲线可有效减弱轮轨相互作用,并主要通过减缓列车首车及导向轮对磨耗降低整体磨耗;随缓和曲线长度不断增加,对动力性能改善效果越不明显。我国重载铁路小半径曲线超高设置通常偏大,建议适当降低超高值、设置10%~20%欠超高,利于改善轮轨受力、减缓磨耗。增大曲线半径利于减弱轮轨相互作用及磨耗,但半径越大改善作用越小。  相似文献   

13.
提出了一种多跨简支曲线轨道折线梁桥的空间振动分析模型,采用20自由度的梁段单元,可方便考虑T型梁横向与竖向弯曲、自由扭转、约束扭转等变形,选取正交流动坐标,建立了曲线轨道折线梁桥的动力特性矩阵,特别适用于曲线轨道折线梁桥与列车的空间振动分析。在实例研究中,计算了提速列车通过32m曲线轨道折线梁桥时的空间振动响应,并检算该桥是否具有足够的刚度及良好的运营平稳性,可供有关部门参考。  相似文献   

14.
将曲线轨道视为周期性离散支撑结构,根据周期性结构的振动特性,通过引入移动荷载作用下曲线轨道梁的数学模态以及广义波数,得出曲线轨道梁频域响应的级数表达,进而求解固定谐振荷载作用下曲线轨道梁平面外弯扭耦合振动的响应特性。通过计算不同频率固定谐振荷载作用下曲线轨梁的动力响应,可以求得曲线轨梁垂向位移频响特性。对单层离散点支撑轨道模型进行计算分析可知:曲线轨道梁一阶自振频率受扣件支点垂向支撑刚度、垂向支撑阻尼系数、扣件支点间距变化影响较大,扣件支点垂向支撑刚度增加时轨梁一阶自振频率提高,垂向支撑阻尼系数增加时轨梁一阶自振频率略有减少,扣件支点间距减小时轨梁一阶自振频率提高;扣件支点间距对曲线轨梁频响特性具有显著的影响,跨中处一阶pinned-pinned共振峰幅值及支点处反共振峰幅值随支点间距的增加而变大;曲线半径对地铁轨道轨梁垂向位移频响特性几乎没有影响。  相似文献   

15.
为探讨桥上无砟轨道损伤对列车-轨道-桥梁系统动力响应的影响规律,基于车辆-轨道-桥梁耦合动力学原理,基于ANSYS+SIMPACK联合仿真,建立了考虑墩台纵向支座刚度、轨道结构及层间接触特性的双线32m简支箱梁桥CRTSⅢ型无砟轨道空间动力学模型。研究了时速200km列车通过条件下,扣件伤损及轨道板和底座板间离缝对车桥系统动力响应的影响规律。研究表明:单个扣件失效对轨道动力响应影响有限,0.07m板缝处轮轨竖向力骤变显著,钢轨竖向位移和钢轨节点反力增大明显;扣件连续失效对系统整体影响更大,其中相邻且对侧扣件失效影响最大;自密实混凝土沿轨道板横向完全脱空后,纵向离缝长度越大,对系统动力响应的影响也越大;相邻轨道板端部自密实混凝土都沿横向完全脱空对系统动力响应影响最大,轨道结构与桥梁结构的垂向加速度、竖向位移均增幅最大,增势最快;离缝长度1.2m,轮重减载率接近限值,继续增加至1.6m时,列车将脱轨;轨道板和桥梁的竖向振动随着离缝长度的增大显著增大,振动骤增会对轨道以及桥梁的耐久性产生不利影响,建议离缝长度检修限值可设为1.2m,并应重点关注轨道板端部自密实混凝土界面脱空情况。  相似文献   

16.
为研究钢弹簧损伤对地铁浮置板轨道及列车振动的影响,基于结构动力学理论建立了钢弹簧损伤情况下地铁列车-浮置板轨道-衬砌-地基的二维整体分析模型。采用模态分析法和Newmark-β法求解车轨系统的动力响应,研究钢弹簧损伤数量、损伤程度、损伤位置及列车速度对车轨振动性能的影响。研究结果表明:钢弹簧损伤会加剧车轨系统的振动响应,且振动幅值随着钢弹簧损伤数量和损伤程度的增加而显著增大;钢弹簧损伤的分布位置对车轨振动影响显著,在相同钢弹簧损伤数量下,损伤位于同一块浮置板板端对车轨振动幅值的影响最大;在钢弹簧损伤情况下,车轨系统的各项竖向加速度随列车速度的增加而显著增大,竖向轮轨接触力及轨道竖向位移幅值则基本不受影响。钢弹簧损伤对乘客舒适度、钢轨使用寿命、周边环境振动都有不利影响,可利用车体竖向加速度、衬砌竖向加速度等敏感指标进行排查和更换,以免造成更严重的后果。  相似文献   

17.
高速列车荷载作用下无砟轨道地基竖向耦合动力响应研究   总被引:1,自引:0,他引:1  
建立高速列车荷载作用下车辆系统-无砟轨道-地基耦合动力模型,通过Fourier变换求解弹性半空间地基土体的动力控制方程,同时根据轨道底座与半空间的接触条件得到了弹性半空间表面竖向位移在频域内的表达式,再采用快速Fourier 变换求得了时域内的土体位移解。结合算例,分析了列车速度、轨道结构参数等因素对地基动力响应的影响。研究结果表明:板下调整层弹簧刚度系数越大,地基土动力响应越大,地表振动越大;底座弯曲刚度越大,地基土动力响应越小;随着列车速度增加,地基土动力响应增大;距离轨道中心处越远,地基土动力响应越小。  相似文献   

18.
高速列车曲线通过时,车辆系统受力状态比直线行驶更为复杂,加上列车复杂车轨耦合系统,列车牵引齿轮传动系统动力学响应难以预测,所以探究曲线通过参数对高速列车牵引齿轮传动系统动力学响应的影响,对于判断牵引齿轮传动系统运行状态是必要的。通过有限元缩聚与轨道车辆动力学相结合方法,运用SIMPACK软件建立了高速列车刚柔耦合精细化动力学模型,考虑齿轮箱、齿轮副和轮对的柔性,研究不同曲线通过参数对齿轮箱动力学响应的变化规律。结果表明超高值和曲线半径对齿轮箱各轴承振动加速度影响规律不同,对齿轮副传动误差峰峰值及径向力幅值变化影响较大,对齿轮时变啮合刚度、接触应力、轴向力和圆周力幅值变化影响较小。  相似文献   

19.
建立了高速列车-框架型板式轨道的动力学模型.基于弹性薄板振动理论和加权余量法,推导了框架型轨道板关于振型坐标的常微分方程.对比分析了运行速度为300 km/h的CRH2-300动车组作用下框架型和平板型板式轨道动力响应,结果表明:两种轨道结构的钢轨垂向位移、钢轨支点反力差别不大,框架型板式轨道的轨道板垂向位移、CA砂浆动应力均大于平板型.分析了CA砂浆弹性模量、板下胶垫刚度对框架型板式轨道动力响应的影响,计算了框架型轨道板的动应力分布,结果表明:随CA砂浆弹性模量的增大,框架型轨道板垂向位移减小,CA砂浆动应力增大,对钢轨垂向位移和钢轨支点反力影响不大;增设板下胶垫可以有效降低CA砂浆动应力;框架型轨道板最大拉应力小于混凝土抗拉强度标准值,可保证强度.  相似文献   

20.
提出一种非对称径向转向架方案,分析了非对称径向转向架的受力特性和导向原理。使用Simpack建立相同参数的对称径向转向架、非对称径向转向架以及常规转向架动力学模型,分析了非对称径向转向架通过左、右曲线的动力学性能、三种转向架的曲线粘着利用率以及牵引力对三种转向架曲线通过性能的影响。仿真结果表明:非对称径向转向架在通过左、右曲线时具有很好的对称性;非对称径向转向架和对称径向转向架在干燥和湿滑的曲线轨道上运行时具有基本一致的黏着利用率,而在R700 m以下的小半径干燥曲线轨道上,两种径向转向架的粘着利用率高于常规转向架;随着曲线半径的增大,两种径向转向架的第一轮对摇头角和后轴轮轴横向力显著小于常规转向架;对于运行在不同的曲线半径下,两种径向转向架的脱轨系数和整车磨耗功率都优于常规转向架,由此可以得出,非对称径向转向架具有和对称径向转向架一样优于常规转向架的曲线通过性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号