首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biofilms are frequently related to invasive fungal infections and are reported to be more resistant to antifungal drugs than planktonic cells. The structural complexity of the biofilm as well as the presence of a polymeric extracellular matrix (ECM) is thought to be associated with this resistant behavior. Scanning electron microscopy (SEM) after room temperature glutaraldehyde‐based fixation, have been used to study fungal biofilm structure and drug susceptibility but they usually fail to preserve the ECM and, therefore, are not an optimised methodology to understand the complexity of the fungal biofilm. Thus, in this work, we propose a comparative analysis of room‐temperature and cryofixation/freeze substitution of Candida albicans biofilms for SEM observation. Our experiments showed that room‐temperature fixative protocols using glutaraldehyde and osmium tetroxide prior to alcohol dehydration led to a complete extraction of the polymeric ECM of biofilms. ECM from fixative and alcohol solutions were recovered after all processing steps and these structures were characterised by biochemistry assays, transmission electron microscopy and mass spectrometry. Cryofixation techniques followed by freeze‐substitution lead to a great preservation of both ECM structure and C. albicans biofilm cells, allowing the visualisation of a more reliable biofilm structure. These findings reinforce that cryofixation should be the indicated method for SEM sample preparation to study fungal biofilms as it allows the visualisation of the EMC and the exploration of the biofilm structure to its fullest, as its structural/functional role in interaction with host cells, other pathogens and for drug resistance assays.  相似文献   

2.
A general methodology is proposed to characterize microcellular solids, the structure of which consists of a three‐dimensional network of filamentary structures. The analysis is based on transmission electron microscopy observation of the filaments individually and of their spatial arrangement. The micrographs are analyzed with grey‐tone digital image analysis techniques, such as opening granulometry and correlation analysis. The methodology is applied to hybrid organic–inorganic low‐density silica solids synthesized by the sol–gel method with an organically modified co‐reactant. The quantitative impact of the co‐reactant on each structural level of the structure is assessed quantitatively.  相似文献   

3.
Electron microscopy is used in biological research to study the ultrastructure at high resolution to obtain information on specific cellular processes. Serial block face‐scanning electron microscopy is a relatively novel electron microscopy imaging technique that allows three‐dimensional characterization of the ultrastructure in both tissues and cells by measuring volumes of thousands of cubic micrometres yet at nanometre‐scale resolution. In the scanning electron microscope, repeatedly an image is acquired followed by the removal of a thin layer resin embedded biological material by either a microtome or a focused ion beam. In this way, each recorded image contains novel structural information which can be used for three‐dimensional analysis. Here, we explore focused ion beam facilitated serial block face‐scanning electron microscopy to study the endothelial cell–specific storage organelles, the Weibel–Palade bodies, during their biogenesis at the Golgi apparatus. Weibel–Palade bodies predominantly contain the coagulation protein Von Willebrand factor which is secreted by the cell upon vascular damage. Using focused ion beam facilitated serial block face‐scanning electron microscopy we show that the technique has the sensitivity to clearly reveal subcellular details like mitochondrial cristae and small vesicles with a diameter of about 50 nm. Also, we reveal numerous associations between Weibel–Palade bodies and Golgi stacks which became conceivable in large‐scale three‐dimensional data. We demonstrate that serial block face‐scanning electron microscopy is a promising tool that offers an alternative for electron tomography to study subcellular organelle interactions in the context of a complete cell.  相似文献   

4.
Nanocomposites consisting of one‐dimensional CuI crystals inside single‐walled carbon nanotubes were obtained using the capillary technique. high‐resolution transmission electron microscopy investigations of the atomic structure of the encapsulated 1D CuI crystals revealed two types of 1D CuI crystals with growth direction <001> and relative to the bulk hexagonal CuI structure. Atomic structure models were proposed based on the high‐resolution transmission electron microscopy images. According to the proposed models and image simulations, the main contrast in the 1D crystal images arises from the iodine atoms whereas copper atoms, with lower atomic number giving lower contrast, are thought to be statistically distributed.  相似文献   

5.
Correlative light and electron microscopy (CLEM) is a multimodal technique of increasing utilization in functional, biochemical, and molecular biology. CLEM attempts to combine multidimensional information from the complementary fluorescence light microscopy (FLM) and electron microscopy (EM) techniques to bridge the various resolution gaps. Within this approach the very same cell/structure/event observed at level can be analyzed as well by FLM and EM. Unfortunately, these studies turned out to be extremely time consuming and are not suitable for statistical relevant data. Here, we describe a new CLEM method based on a robust specimen preparation protocol, optimized for cryosections (Tokuyasu method) and on an innovative image processing toolbox for a novel type of multimodal analysis. Main advantages obtained using the proposed CLEM method are: (1) hundred times more cells/structures/events that can be correlated in each single microscopy session; (2) three‐dimensional correlation between FLM and EM, obtained by means of ribbons of serial cryosections and electron tomography microscopy (ETM); (3) high rate of success for each CLEM experiment, obtained implementing protection of samples from physical damage and from loss of fluorescence; (4) compatibility with the classical immunogold and immunofluorescence labeling techniques. This method has been successfully validated for the correlative analysis of Russel Bodies subcellular compartments. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Kidney tissue double fixed in glutaraldehyde and osmium tetroxide and embedded in epoxy resin by standard techniques used for transmission electron microscopy was cut into section 1 micron or more thick and surface-etched by an oxygen plasma. Etching caused ash residues (possibly composed partly or organo-metallic complexes) of membranes and other etch resistant cell components to emerge as recognizable structures projecting upward from the surrounding embedment which was combusted and removed as volatile products. using the secondary electron mode for image formation, structural features of cells which could be imaged with clarity with the scanning electron microscopy included: profiles of peripheral and in-folded plasma membranes, the nuclear envelope and profiles of cut mitochondrial matrix granules, cristae and the outer limiting membranes. Resolution was better than that obtainable from most other methods of specimen preparation currently being used in scanning electron microscopy for viewing the internal structures of cells or organelles in bulk samples of tissue.  相似文献   

7.
This paper reports a procedure to combine the focused ion beam micro‐sampling method with conventional Ar‐milling to prepare high‐quality site‐specific transmission electron microscopy cross‐section samples. The advantage is to enable chemical and structural evaluations of oxygen dissolved in a molten iron sample to be made after quenching and recovery from high‐pressure experiments in a laser‐heated diamond anvil cell. The evaluations were performed by using electron energy‐loss spectroscopy and high‐resolution transmission electron microscopy. The high signal to noise ratios of electron energy‐loss spectroscopy core‐loss spectra from the transmission electron microscopy thin foil, re‐thinned down to 40 nm in thickness by conventional Argon ion milling, provided us with oxygen quantitative analyses of the quenched molten iron phase. In addition, we could obtain lattice‐fringe images using high‐resolution transmission electron microscopy. The electron energy‐loss spectroscopy analysis of oxygen in Fe0.94O has been carried out with a relative accuracy of 2%, using an analytical procedure proposed for foils thinner than 80 nm. Oxygen K‐edge energy‐loss near‐edge structure also allows us to identify the specific phase that results from quenching and its electronic structure by the technique of fingerprinting of the spectrum with reference spectra in the Fe‐O system.  相似文献   

8.
In this study, we investigate the functional behaviour of the intensity in high‐angle annular dark field scanning transmission electron micrograph images. The model material is a silica particle (20 nm) gel at 5 wt%. By assuming that the intensity response is monotonically increasing with increasing mass thickness of silica, an estimate of the functional form is calculated using a maximum likelihood approach. We conclude that a linear functional form of the intensity provides a fair estimate but that a power function is significantly better for estimating the amount of silica in the z‐direction. The work adds to the development of quantifying material properties from electron micrographs, especially in the field of tomography methods and three‐dimensional quantitative structural characterization from a scanning transmission electron micrograph. It also provides means for direct three‐dimensional quantitative structural characterization from a scanning transmission electron micrograph.  相似文献   

9.
Lithium‐ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium‐ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3‐D imaging techniques, quantitative assessment of 3‐D microstructures from 2‐D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two‐dimensional (2‐D) data sets. In this study, stereological prediction and three‐dimensional (3‐D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium‐ion battery electrodes were imaged using synchrotron‐based X‐ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2‐D image sections generated from tomographic imaging, whereas direct 3‐D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2‐D image sections is bound to be associated with ambiguity and that volume‐based 3‐D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially‐dependent parameters, such as tortuosity and pore‐phase connectivity.  相似文献   

10.
The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin‐infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge‐like morphology of nondistinguishable intracellular compartments. Resin‐infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell–cell and cell–surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra‐thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three‐dimensional features by scanning electron microscopy.  相似文献   

11.
The urothelium forms the blood–urine barrier, which depends on the complex organization of transmembrane proteins, uroplakins, in the apical plasma membrane of umbrella cells. Uroplakins compose 16 nm intramembrane particles, which are assembled into urothelial plaques. Here we present an integrated survey on the molecular ultrastructure of urothelial plaques in normal umbrella cells with advanced microscopic techniques. We analyzed the ultrastructure and performed measurements of urothelial plaques in the normal mouse urothelium. We used field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) on immunolabeled ultrathin sections (immuno‐TEM), and freeze‐fracture replicas (FRIL). We performed immunolabeling of uroplakins for scanning electron microscopy (immuno‐FESEM). All microscopic techniques revealed a variability of urothelial plaque diameters ranging from 332 to 1179 nm. All immunolabeling techniques confirmed the presence of uroplakins in urothelial plaques. FRIL showed the association of uroplakins with 16 nm intramembrane particles and their organization into plaques. Using different microscopic techniques and applied qualitative and quantitative evaluation, new insights into the urothelial apical surface molecular ultrastructure have emerged and may hopefully provide a timely impulse for many ongoing studies. The combination of various microscopic techniques used in this study shows how these techniques complement one another. The described advantages and disadvantages of each technique should be considered for future studies of molecular and structural membrane specializations in other cells and tissues. Microsc. Res. Tech. 77:896–901, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The fluorescent metabolic labeling of microorganisms genome is an advanced imaging technique to observe and study the native shapes, structural changes, functions, and tracking of nucleic acids in single cells or tissues. We have attempted to visualize the newly synthesized DNA within the intact nucleoid of ice‐embedded proliferating cells of Escherichia coli K‐12 (thymidine‐requiring mutant, strain N4316) via correlative light‐electron microscopy. For that purpose, erythrosine‐11‐dUTP was synthesized and used as a modified analog of the exogenous thymidine substrate for metabolic incorporation into the bacterial chromosome. The formed fluorescent genomic DNA during in cellulo polymerase reaction caused a minimal cellular arrest and cytotoxicity of E. coli at certain controlled conditions. The stained cells were visualized in typical red emission color via an epifluorescence microscope. They were further ice‐embedded and examined with a Hilbert differential contrast transmission electron microscopy. At high‐resolution, the ultrastructure of tagged nucleoid appeared with significantly higher electron dense in comparison to the unlabeled one. The enhanced contrast areas in the chromosome were ascribed to the presence of iodine contents from erythrosine dye. The presented labeling approach might be a powerful strategy to reveal the structural and dynamic changes in natural DNA replication including the relationship between newly synthesized in vivo nucleic acid and the physiological state of the cell.  相似文献   

13.
Today's (nano)‐functional materials, usually exhibiting complex physical properties require local investigation with different microscopy techniques covering different physical aspects such as dipolar and magnetic structure. However, often these must be employed on the very same sample position to be able to truly correlate those different information and corresponding properties. This can be very challenging if not impossible especially when samples lack prominent features for orientation. Here, we present a simple but effective method to mark hundreds of approximately 15×15 μm sample areas at one time by using a commercial transmission electron microscopy grid as shadow mask in combination with thin‐film deposition. Areas can be easily distinguished when using a reference or finder grid structure as shadow mask. We show that the method is suitable to combine many techniques such as light microscopy, scanning probe microscopy and scanning electron microscopy. Furthermore, we find that best results are achieved when depositing aluminium on a flat sample surface using electron‐beam evaporation which ensures good line‐of‐sight deposition. This inexpensive high‐throughput method has several advantageous over other marking techniques such as focused ion‐beam processing especially when batch processing or marking of many areas is required. Nevertheless, the technique could be particularly valuable, when used in junction with, for example focused ion‐beam sectioning to obtain a thin lamellar of a particular pre‐selected area.  相似文献   

14.
Tomographic reconstruction by transmission electron microscopy is used to reveal three‐dimensional nanoparticle shapes and the stacking configurations of nanoparticle ensembles. Reconstructions are generated from bright‐field image tilt series, with a sample tilt range up to ± 70°, using single or dual tilt axes. We demonstrate the feasibility of this technique for the analysis of nanomaterials, using appropriate acquisition conditions. Tomography reveals both cubic and hexagonal close‐packing configurations in multi‐layered arrays of size‐selected In nanospheres. By tomography and phase‐contrast lattice imaging, we relate the three‐dimensional shape of PbSe octahedral nanoparticles to the underlying crystal structure. We also confirm simple‐cubic packing in multi‐layers of PbSe nanocubes and see evidence that the particle shapes have cubic symmetry. The shapes of TiO2 nanorod bundles are shown by tomographic reconstruction to resemble flattened ellipsoids.  相似文献   

15.
Humivorous termites are dominant members of tropical rainforest soil communities. In the soil‐feeding subfamily Apicotermitinae (Termitidae), the enteric valve connecting the first section of the hindgut to the paunch often displays a complex sclerotized armature everted towards the lumen of the paunch. This structure is central in termite taxonomy but its function remains hypothetical. Here, we evaluate the potential of confocal laser scanning microscopy to provide detailed imaging of the valve of Anoplotermes parvus, by comparison with bright‐field microscopy and scanning electron microscopy. We detected a strong far‐red emission of the enteric valve armature that sharply contrasted with the surrounding tissues, providing a convenient method to highlight minute structural elements of the valve and its three‐dimensional structure. The method is easy to use and is applicable to standard archival material as demonstrated by images of enteric valves of four other Apicotermitinae species. It may represent a valuable asset for the study of termite enteric valves, for the purpose of taxonomy or functional morphology.  相似文献   

16.
Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two‐photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long‐term two‐photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool for studying the dynamics of neurodegenerative diseases, such as Alzheimer's disease. However, light microscopy has important limitations in revealing alterations occurring at the synaptic level and when this is required, electron microscopy is mandatory. FIB/SEM microscopy is a novel tool for three‐dimensional high‐resolution reconstructions, since it acquires automated serial images at ultrastructural level. Using FIB/SEM imaging, we observed, at 10 nm isotropic resolution, the same dendrites that were imaged in vivo over 9 days. Thus, we analyzed their ultrastructure and monitored the dynamics of the neuropil around them. We found that stable spines (present during the 9 days of imaging) formed typical asymmetric contacts with axons, whereas transient spines (present only during one day of imaging) did not form a synaptic contact. Our data suggest that the morphological classification that was assigned to a dendritic spine according to the in vivo images did not fit with its ultrastructural morphology. The correlative technique described herein is likely to open opportunities for unravelling the earlier unrecognized complexity of the nervous system.  相似文献   

17.
The properties and performance of collagen‐based materials may be affected by the collagen fibre bundle pattern, orientation and weave. The aim of this study was to develop and apply methods to visualize the dermis using confocal laser scanning microscopy from thin tissue sections stained with haematoxylin and eosin. The data was processed to allow three‐dimensional (3‐D) visualization on a PC and using a 3‐D immersive technology system. The 3‐D visualization of the confocal microscope image stacks allowed the evaluation of the collagen macromolecular structure including the collagen fibre bundles. The methods developed provide a novel way of viewing complex organic structures with further potential applications in the medical field.  相似文献   

18.
19.
Transmission Electron Microscopy is used as a quantitative method to measure the shapes, sizes and volumes of gold nanoparticles created at a polymeric surface by three different in situ synthesis methods. The atomic number contrast (Z‐contrast) imaging technique reveals nanoparticles which are formed on the surface of the polymer. However, with certain reducing agents, the gold nanoparticles are additionally found up to 20 nm below the polymer surface. In addition, plan‐view high‐angle annular dark‐field scanning transmission electron microscopy images were statistically analyzed on one sample to measure the volume, height and effective diameter of the gold nanoparticles and their size distributions. Depth analysis from high‐angle annular dark‐field scanning transmission electron microscopy micrographs also gives information on the dominant shape of the nanoparticles.  相似文献   

20.
Since the end of the last millennium, the focused ion beam scanning electron microscopy (FIB‐SEM) has progressively found use in biological research. This instrument is a scanning electron microscope (SEM) with an attached gallium ion column and the 2 beams, electrons and ions (FIB) are focused on one coincident point. The main application is the acquisition of three‐dimensional data, FIB‐SEM tomography. With the ion beam, some nanometres of the surface are removed and the remaining block‐face is imaged with the electron beam in a repetitive manner. The instrument can also be used to cut open biological structures to get access to internal structures or to prepare thin lamella for imaging by (cryo‐) transmission electron microscopy. Here, we will present an overview of the development of FIB‐SEM and discuss a few points about sample preparation and imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号