首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The effect of cooling rate after extrusion, solution heat treatment, mechanical deformation and aging on intergranular corrosion (IGC) of two model AlMgSi alloys with different Cu content was investigated using an accelerated corrosion test. The low Cu extrusions (0.02 wt%) were resistant to IGC while the high Cu (0.17 wt%) variants were susceptible in certain tempers. Slow cooling in air introduced IGC. The IGC susceptibility was reduced and finally removed by artificial aging. Water quenching prevented IGC, but severe IGC was introduced by slight aging (underaging). Peak aging (T6) generally reduced IGC susceptibility regardless of cooling media. Overaging further reduced IGC, usually at the expense of introducing pitting. IGC susceptibility was related to the microgalvanic coupling between enriched Cu on the grain boundaries (noble) and the adjacent solute depleted zone (active). Cu enrichment was caused either by slow cooling in air or slight aging of water quenched samples. High IGC resistance was obtained either by keeping the Cu content low or by applying proper heat treatment to high Cu samples. For the present high Cu samples, artificial aging to peak strength provided at the same time the necessary IGC resistance.  相似文献   

2.
Certain 6000-series extrusions may develop susceptibility to intergranular corrosion (IGC) by improper heat treatment, especially if copper is present as an alloying element. Although occurrence of IGC in such cases is documented, the underlying mechanisms are not adequately explained. We present corrosion data for two model alloys, having different Cu content and Mg:Si ratio, showing that the susceptibility to IGC depended primarily on the Cu content and secondly on thermal processing. Low Cu samples (0.0005 wt.% Cu) were essentially resistant to IGC. High Cu samples (0.12 wt.% Cu), which were air cooled after extrusion, exhibited significant IGC. However, IGC susceptibility was reduced significantly as a result of artificial aging to peak strength. Water quenched high Cu samples were essentially resistant to IGC. However, slight IGC susceptibility was introduced after aging. Electron optical characterisation revealed Al4Mg8Si7Cu2 (Q-phase) grain boundary precipitates on all the variants susceptible to IGC. The susceptibility was attributed to microgalvanic coupling between Q-phase grain boundary precipitates (noble) and the adjacent depleted zone (active).  相似文献   

3.
A study of the effect of lithium content (1, 3 and 5 wt.%) and heat treatment (400 °C during 144 h) on the corrosion behavior of Ni3Al alloy has been carried out in a 62 mol.%Li2CO3-38 mol.%K2CO3 mixture at 650 °C using electrochemical techniques. Employed electrochemical techniques included potentiodynamic polarization curves, linear polarization resistance, LPR, electrochemical impedance spectroscopy, EIS, and electrochemical noise, measurements EN. Results have shown that the alloys exhibited an active-passive behavior regardless of the heat treatment. For alloys without heat treatment, the most corrosion resistant was the Ni3Al base alloy, but when they were heat treated, the most corrosion resistant was the alloy containing 3%Li. EIS results showed that for short immersion tests, the corrosion process was under diffusion control, but for longer exposure times, the presence of a protective scale was evident. All the alloys were highly susceptible to a localized type of corrosion according to EN measurements and supported by SEM micrographs.  相似文献   

4.
The present work aimed at defining optimal conditions using double loop electrochemical potentiokinetic reactivation (DL-EPR) method for evaluating intergranular corrosion (IGC) susceptibility of lean duplex stainless steel (LDX2101) aged at 700 °C between 3 min and 300 h. The results demonstrated that the modified DL-EPR measurement (solution of 33% H2SO4 + 0.1% HCl at 20 °C and scan rate of 2.5 mV/s) could successfully characterize the interactions between precipitation, chromium depletion and IGC of LDX2101 with high sensitivity and reproducibility. In addition, there was no indication of healing because the effect of formation of chromium-enriched precipitates was more dominative than that of redistribution of chromium in depleted zones.  相似文献   

5.
PM 304L and 316L stainless steel have been compacted at 400, 600 and 800 MPa and sintered in vacuum and in nitrogen-hydrogen atmosphere. Postsintered heat treatments (annealing solution and ageing at 375, 675 and 875 °C) have been applied. Pitting corrosion resistance has been studied using anodic polarization measurements and the ferric chloride test. Anodic polarization curves reveal that densities and atmospheres are relevant on anodic behaviour. Pitting resistance is higher for PM 316L and for higher densities and vacuum as sintered atmosphere. Ageing heat treatments at medium and high temperatures are detrimental to passivity although susceptibility to pitting corrosion barely changes. But heat treatments at 375 °C even show certain improvement in pitting corrosion resistance. The results were correlated to the presence of precipitates and mainly to the lamellar constituent which appears in some samples sintered in nitrogen-hydrogen atmosphere. The role of nitrogen on the samples sintered under nitrogen-hydrogen atmosphere and its relation to the microstructural features was described.  相似文献   

6.
The effect of artificial aging parameters on the corrosion performance of air cooled AlMgSi(Cu) model alloy extrusions was investigated. Accelerated corrosion test revealed that the extrusions were highly susceptible to intergranular corrosion (IGC) in the naturally aged condition. However, IGC susceptibility was reduced, and finally eliminated, by artificial aging. Overaging introduced slight pitting susceptibility. EDS X-ray mapping in FE-TEM revealed Mg2Si and Q-phase (Al4Cu2Mg8Si7) grain boundary precipitates and a continuous Cu-enriched grain boundary film. IGC susceptibility was related to the Cu-enriched grain boundary film. Increased IGC resistance was caused by coarsening of the grain boundary film by aging. Pitting susceptibility by over aging evolved due to coarsening of the Q-phase particles in the grain bodies.  相似文献   

7.
Zr-based metallic glasses passivate spontaneously, but exhibit also a certain pitting susceptibility. On the example of the Zr59Ti3Cu20Al10Ni8 alloy studied in 0.01 M Na2SO4 + x M NaCl (x = 0-0.1) electrolytes it is demonstrated that the surface finishing state and the pre-exposure conditions can significantly influence the free corrosion and anodic polarisation behaviour. Mechanical fine-polishing procedures can lead to extremely smooth topographies but also to Cu enrichment at the surface. This yields a pronounced Cu dissolution at low anodic polarisation prior to stable passivity and increases the pitting initiation susceptibility as compared to mechanically ground surface states.  相似文献   

8.
The corrosion resistance and pitting behaviour of Alloy 31, a high-alloyed austenitic stainless steel (UNS N08031), is studied in two heavy brine LiBr solutions (850 g/l) with and without corrosion inhibitor (lithium chromate) at different temperatures (25 °C, 50 °C, 75 °C and 100 °C) using electrochemical techniques. Cyclic potentiodynamic curves indicate that UNS N08031 is less pitting corrosion resistant and it reduces its repassivation properties as temperature increases. Comparison between the results obtained in LiBr solutions with and without inhibitor suggested a decrease in the inhibitor efficiency of lithium chromate at high temperatures.  相似文献   

9.
The potentiodynamic anodic polarization curve of α-brass (70% Cu-30% Zn) in 1 M LiBr solution showed an initial active region of the alloy dissolution followed by two well defined anodic current peaks then a narrow passivation region before the pitting potential (Epit) is reached. The initial active anodic region exhibited Tafel slope with 90 mV dec−1 attributed to the formation of CuBr2 complexes. The anodic current peaks were attributed to the formation of CuBr and Cu2+ ions, respectively. The change of pH values of LiBr solution did not affect the anodic polarization curves of α-brass. Increasing the solution temperature from 30 to 90 °C changed the corrosion type from pitting to general one. The addition of 10−2 M benzotriazole (BTAH) to 1 M LiBr solution is completely inhibited the pitting corrosion at 30 °C while it did not inhibit the pitting at 90 °C. The inhibition effect was attributed to the adsorption of BTAH molecules on the alloy surface, which obeys Langmuir isotherm. The presence or absence of pitting corrosion was confirmed by using SEM.  相似文献   

10.
Pitting corrosion resistance of 2304 duplex stainless steels after autogenous plasma-arc welding and subsequent short-time post-weld heat treatment at different temperatures, determined by critical pitting temperature in 1.0 M NaCl solution, has been investigated. The results showed that the as-welded joint displayed impaired pitting corrosion resistance and that pitting preferentially occurred at ferrite grain in heat-affected zone near the fusion line. Short-time annealing treatment at 1020–1120 °C has a beneficial effect on the pitting corrosion resistance of welded joint. The most favorable annealing temperature for the analyzed welded joints was found to be 1080 °C, at which the joint restored the pitting corrosion resistance lost during welding entirely.  相似文献   

11.
This study investigates the correlation between the thermal cycles experienced by Alloy 690 weldments fabricated using gas tungsten arc welding (GTAW) and laser beam welding (LBW) processes, and their corresponding corrosion resistance properties. The corrosion resistance of the weldments is evaluated using a U-bend stress corrosion test in which the specimens are immersed in a boiling, acid solution for 240 h. The experimental results reveal that the LBW inputs significantly less heat to the weldment than the GTAW, and therefore yields a far faster cooling rate. Moreover, the corrosion tests show that in the GTAW specimen, intergranular corrosion (IGC) occurs in both the fusion zone (FZ) and the heat affected zone (HAZ). By contrast, the LBW specimen shows no obvious signs of IGC.  相似文献   

12.
对铝锂合金电子束焊接头进行焊后热处理,研究了时效处理前后接头各区域的晶间腐蚀、剥蚀和电化学腐蚀行为。结果表明,接头经过时效处理后,焊缝晶界析出的T1(Al_2CuLi)相数量增加,并且形成了明显的晶界无沉淀带(Precipitate Free Zone,PFZ)。焊态下接头未出现晶间腐蚀,热影响区和母材区均出现了孔蚀;焊后时效处理增大了接头的晶间腐蚀倾向,热影响区同时发生了孔蚀和晶间腐蚀,母材区出现了严重的晶间腐蚀。焊态下焊缝和热影响区均具有优异的抗剥蚀能力,母材区对剥蚀的敏感性较高;焊后时效处理可提高接头母材区的抗剥蚀能力,但会增大热影响区的剥蚀敏感性。电化学腐蚀测试表明,与时效后的接头焊缝相比,焊态下焊缝的自腐蚀电位较高,腐蚀电流密度小,具有相对较好的耐蚀性。  相似文献   

13.
The relation between corrosion resistance and microstructure of Mg-Zn-Y alloys with a long period stacking ordered (LPSO) phase has been investigated. In order to clarify the influence of microstructure evolution by rapid solidification on the occurrence of localized corrosion such as filiform corrosion, several Mg97.25Zn0.75Y2 (at. %) alloys with different cooling rates were fabricated by the gravity casting, copper mould injection casting and melt-spinning techniques and their corrosion behavior and microstructures were examined by the salt immersion tests, electrochemical measurements, XRD and TEM. When the cooling rate was less than 3 × 104 K s−1, filiform corrosion propagated in the early stage of salt immersion test, due to formation of a massive block-shaped LPSO phase during casting. On the other hand, when the cooling rate was increased up to 3 × 104 K s−1, rapidly solidified (RS) alloys exhibited excellent corrosion resistance because of grain refinement and formation of a supersaturated single-phase solid solution. Large-sized Mg97.25Zn0.75Y2 alloys fabricated by consolidation of the RS ribbons also exhibited excellent corrosion resistance with passivity. Enhancement of microstructural and electrochemical homogeneities in the Mg-Zn-Y alloys by rapid solidification techniques results in the passivity of substrate materials.  相似文献   

14.
The corrosion behaviour of several metals and metal alloys (copper, nickel, AISI 1018 steel, brass, Inconel 600) exposed to a typical ionic liquid, the 1-butyl-3-methyl-imidazolium bis-(trifluoromethanesulfonyl) imide, ([C4mim][Tf2N]), has been investigated by electrochemical and weight-loss methods. Corrosion current densities have been determined by extrapolation from Tafel plots and by polarization resistance measurements and 48 h immersion tests were performed at 150, 250, 275 and 325 °C. Room temperature results show low corrosion current densities (0.1-1.2 μA/cm2) for all the metals and alloys investigated. At 70 °C, the corrosion current for copper dramatically increases showing a strongly dependence on temperature. At 150 °C copper shows significant weight-loss while nickel, AISI 1018, brass and Inconel do not. At higher temperatures (?275 °C), the copper sample crumbles and localized corrosion occurs for the other metals and alloys.  相似文献   

15.
In comparison with CuAl (Al: 0.2 and 0.5 wt.%) alloys, corrosion resistance (CR) of CuMg (Mg: 0.12 and 0.34 wt.%) alloys was studied at 673-1173 K in atmospheric O2. All the samples were pre-annealed at 873 K in atmospheric H2. The CR of CuMg alloys at 673-973 K is improved in contrast to a pure Cu but much poorer than that of CuAl alloys, while the improvement can hardly be observed for CuMg alloys at and above 1073 K, which is similar to CuAl alloys. The poorer CR of CuMg alloys compared with that of CuAl alloys at 673-973 K is largely attributed to the incorporation of Cu in the MgO surface layer and the low Pilling-Bedworth ratio of CuMg-O system smaller than unity, and the vanishing of CR for CuMg alloys at and above 1073 K is ascribed to the instability of the MgO layer at the Cu2O/CuMg interface.  相似文献   

16.
The research explored ways of improving corrosion behaviour of AZ91D magnesium alloy through heat treatment for degradable biocompatible implant application. Corrosion resistance of heat-treated samples is studied in simulated body fluid at 37 °C using immersion and electrochemical testing. Heat treatment significantly affected microgalvanic corrosion behaviour between cathodic β-Mg17Al12 phase and anodic α-Mg matrix. In T4 microstructure, dissolution of the β-Mg17Al12 phase decreased the cathode-to-anode area ratio, leading to accelerated corrosion of α-Mg matrix. Fine β-Mg17Al12 precipitates in T6 microstructure facilitated intergranular corrosion and pitting, but the rate of corrosion was less than those of as-cast and T4 microstructures.  相似文献   

17.
Y.L. Chou  J.W. Yeh 《Corrosion Science》2010,52(8):2571-2581
The purpose of this study is to investigate the electrochemical properties of the Co1.5CrFeNi1.5Ti0.5Mox high-entropy alloys in three aqueous environments which simulate acidic, marine, and basic environments at ambient temperature (∼25 °C). The potentiodynamic polarisation curves of the Co1.5CrFeNi1.5Ti0.5Mox alloys, obtained in aqueous solutions of H2SO4 and NaOH, clearly revealed that the corrosion resistance of the Mo-free alloy was superior to that of the Mo-containing alloys. On the other hand, the lack of hysteresis in cyclic polarisation tests and SEM micrographs confirmed that the Mo-containing alloys are not susceptible to pitting corrosion in NaCl solution.  相似文献   

18.
This study investigates the electrochemical passive properties of AlxCoCrFeNi alloys in H2SO4 by potentiodynamic polarization, EIS, and weight loss tests from 20 to 65 °C. Experimental results indicate that Al harms the corrosion resistance in H2SO4 at temperatures exceeding 27 °C owing to the porous and inferior nature of the protection oxide film of Al in these alloys. Closely examining the Arrhenius plots of corrosion current density reveals that both pre-exponential factor A and activation energy Ea increase with Al content. However, A affects corrosion current density more significantly than Ea at higher temperatures and, conversely, at lower temperatures.  相似文献   

19.
A newly synthesized glycine derivative (termed GlyD), 2-(4-(dimethylamino)benzylamino)acetic acid hydrochloride, was used to inhibit uniform and pitting corrosion processes of Al in 0.50 M KSCN solutions (pH 6.8) at 25 °C. For uniform corrosion inhibition study, Tafel extrapolation, linear polarization resistance and impedance methods were used, complemented with SEM examinations. An independent method of chemical analysis, namely ICP-AES (inductively coupled plasma atomic emission spectrometry) was also used to test validity of corrosion rate measured by Tafel extrapolation method. GlyD inhibited uniform corrosion, even at low concentrations, reaching a value of inhibition efficiency up to 97% at a concentration of 5 × 10−3 M. Results obtained from the different corrosion evaluation techniques were in good agreement. This new synthesized glycine derivative was also used to control pit nucleation and growth on the pitted Al surface based on cyclic polarization, potentiostatic and galvanostatic measurements. The pitting potential (Epit) and the repassivation potential (Erp) increased by the addition of GlyD. Thus GlyD suppressed pit nucleation and propagation. Nucleation of pit was found to take place after an incubation time (ti). The rate of pit nucleation and growth decreased with increase in inhibitor concentration. Morphology of pitting was also studied as a function of the applied anodic potential and solution temperature. Cross-sectional view of pitted surface revealed the formation of large distorted hemispherical and narrow deep pits. GlyD was much better than Gly in controlling uniform and pitting corrosion processes of Al in these solutions.  相似文献   

20.
In the present paper, the corrosion behavior of Ti60 alloys with an aluminide, TiAlCr, and enamel coatings in moist air containing NaCl vapor at 700-800 °C were studied. The results showed that the TiAlCr and aluminide coatings failed to protect the substrate from corrosion due to the cyclic formation of volatile products during corrosion at 800 °C. However, an uneven continuous protective Al2O3 scale could form on the aluminide coating during corrosion at 700 °C. And the enamel coating could protect Ti60 from corrosion due to its high thermochemical stability and matched thermal expansion coefficient with substrates of Ti-base alloys during corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号