首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
The development of low-temperature combustion models combined with the use of biofuels has been considered as an efficient strategy to reduce pollutant emissions like CO, HC. NOx, and smoke. Indeed, Homogeneous Charge Compression Ignition (HCCI) is the new approach to drastically minimize NOx emissions and smoke owing to the lower cylinder temperature and a higher rate of homogeneous A/F mixture as compared to compression ignition (CI) engines. The present research deal with the behavior analysis of a CI engine powered by diesel, Euglena Sanguinea (ES), and their blends (ES20D80, ES40D60, ES60D40, ES80D20). The experimental results revealed the highest brake thermal efficiency for ES20D80 although it decreased by 4.1% compared to diesel at normal mode. The average drop in HC, CO, and smoke was 2.1, 2.3, and 5.7% for ES20D80 as opposed to diesel fuel. Therefore, in the next stage, ES20D80 with various concentrations of graphite oxide (GO) nanoparticle (20, 40, 60, and 80 ppm) was chosen to carry out experiments in the HCCI mode, in which hydrogen gas was induced along with air through the intake pipe at a fixed flow rate of 3 lpm for the enrichment of the air-fuel mixture. As a result, the combination of hydrogen-enriched gas and GO-added ES20D80 in the HCCI mode showed similar performance to the CI engine but registered a major reduction of NOx and smoke emissions, corresponding to 75.24% and 53.07% respectively, as compared to diesel fuel at normal mode.  相似文献   

2.
During the past decades, the diesel engine has been through times of upheaval, boom and bust. At the beginning of the century, almost 50% of the new vehicle registrations in the European market were diesel-powered. However, the news of deadly diesel NOx emissions supported by the diesel emission scandals caused a shock to the diesel engine market, and the sustainability of the diesel engine is currently in dispute.Recently major automotive manufacturers announced the development of diesel-powered vehicles with negligible NOx emissions. Moreover, the NOx emissions production is of lower concern for heavy-duty, marine or power generations applications where the implementation of advanced aftertreatment systems is feasible. However, despite the tackle of NOx emissions, the decarbonisation of the automotive, marine and power generation markets is mandatory for meeting greenhouse gas emissions targets and limiting global warming.The decarbonisation of the diesel engine can be achieved by the implementation of a carbon-free fuel such as ammonia. This paper provides a detailed overview of ammonia as a fuel for compression ignition engines. Ammonia can be combusted with diesel or any other lower autoignition temperature fuel in dual-fuel mode and lead to a significant reduction of carbon-based emissions. The development of advanced injection strategies can contribute to enhanced performance and overall emissions improvement. However, ammonia dual-fuel combustion currently suffers from relatively high unburned ammonia and NOx emissions because of the fuel-bound nitrogen. Therefore, the implementation of aftertreatment systems is required. Hence, ammonia as a compression ignition fuel can be currently seen as a feasible solution only for marine, power generation and possibly heavy-duty applications where no significant space constraints exist.  相似文献   

3.
This paper documents the application of exhaust gas fuel reforming of two alternative fuels, biodiesel and bioethanol, in internal combustion engines. The exhaust gas fuel reforming process is a method of on-board production of hydrogen-rich gas by catalytic reaction of fuel and engine exhaust gas. The benefits of exhaust gas fuel reforming have been demonstrated by adding simulated reformed gas to a diesel engine fuelled by a mixture of 50% ultra low sulphur diesel (ULSD) and 50% rapeseed methyl ester (RME) as well as to a homogeneous charge compression ignition (HCCI) engine fuelled by bioethanol. In the case of the biodiesel fuelled engine, a reduction of NOx emissions was achieved without considerable smoke increase. In the case of the bioethanol fuelled HCCI engine, the engine tolerance to exhaust gas recirculation (EGR) was extended and hence the typically high pressure rise rates of HCCI engines, associated with intense combustion noise, were reduced.  相似文献   

4.
Compression ignition engines are the dominant tools of the modern human life especially in the field of transportation. But, the increasing problematic issues such as decreasing reserves and environmental effects of diesel fuels which is the energy source of compression ignition engines forcing researchers to investigate alternative fuels for substitution or decreasing the dependency on fossil fuels. The mostly known alternative fuel is biodiesel fuel and many researchers are investigating the possible raw materials for biodiesel production. Also, hydrogen fuel is an alternative fuel which can be used in compression ignition engines for decreasing fuel consumption and hazardous exhaust emissions by enriching the fuel. In this study, influences of hydrogen enrichment to diesel and diesel tea seed oil biodiesel blends (B10 and B20) were investigated on an unmodified compression ignition engine experimentally. In consequence of the experiments, lower torque and higher brake specific fuel consumption data were measured when the engine was fuelled diesel biodiesel blends (B10 and B20) instead of diesel fuel. Also, diesel biodiesel blends increased CO2 and NOx emissions while decreasing the CO emissions. Hydrogen enrichment (5 l/m and 10 l/m) was improved the both torque and brake specific fuel consumption for all test fuels. Furthermore, hydrogen enrichment reduced CO and CO2 emissions due to absence of carbon atoms in the chemical structure for all test fuels. Increasing flow rate of hydrogen fuel from 5 l/m to 10 l/m further improved performance measures and emitted harmful gases except NOx. The most significant drawback of the hydrogen enrichment was the increased NOx emissions.  相似文献   

5.
Improvements in internal combustion engine and aftertreatment technologies are needed to meet future environmental quality goals. Systems using recently developed compact plasmatron fuel converters in conjunction with state-of-the-art engines and aftertreatment catalysts could provide new opportunities for obtaining substantial emissions reductions. Plasmatron fuel converters provide a rapid response, compact means to transform a wide range of hydrocarbon fuels (including gasoline, natural gas and diesel fuel) into hydrogen-rich gas. Hydrogen-rich gas can be used as an additive to provide NOx reductions of more than 80% in spark ignition gasoline engine vehicles by enabling very lean operation or heavy exhaust engine recirculation. It may also be employed for cold start hydrocarbon reduction. If certain requirements are met, it may also be possible to achieve higher spark ignition engine efficiencies (e.g., up to 95% of those of diesel engines). These requirements include the attainment of ultra lean, high compression ratio, open throttle operation using only a modest amount of hydrogen addition. For diesel engines, use of compact plasmatron reformers to produce hydrogen-rich gas for the regeneration of NOx absorber/adsorbers and particulate traps for diesel engine exhaust aftertreatment could provide significant advantages. Recent tests of conversion of diesel fuel to hydrogen-rich gas using a low current plasmatron fuel converter with non-equilibrium plasma features are described.  相似文献   

6.
This study investigates the potential usage of the methane and hydrogen enriched methane in a turbocharged common-rail direct injection diesel engine. Methane and hydrogen/methane mixtures are sent through the air intake manifold of the engine. The engine is operated at four different loads and three different compression ratios. Results are compared amongst single diesel and dual-fuel operations at different compression ratios and load conditions. Compared to diesel, dual-fuel operations mostly generate higher and advanced peak in-cylinder gas pressure, more combustion noise, late pilot injection and start of combustion, advanced combustion center, substantial variations at ignition delay and combustion duration, a significant increase in cyclic variations at low and medium loads, and earlier heat release. Hydrogen enrichment decreases evidently specific fuel consumption. Concerning emissions, compared to diesel operation, dual-fuel operations produce higher total hydrocarbon (THC) and nitrogen oxides (NOx) but lower carbon dioxide (CO2). Hydrogen substitutions decrease THC and CO2 emissions of methane dual-fuel operations approximately between 9-29% and 1–32%, respectively. Smoke emission of dual-fuel operations is less than that of diesel at low and medium loads, whereas it sharply increases at high load. Knocking occurs at high compression ratio and load conditions with dual-fuel operations and dramatically increases with increasing hydrogen ratio. Decreasing the compression ratio notably reduces the combustion noise as well as some emissions, such as NOx, CO2 and smoke, for entire load ranges of dual-fuel and diesel operations.  相似文献   

7.
The effects of biodiesel (rapeseed methyl ester, RME) and different diesel/RME blends on the diesel engine NOx emissions, smoke, fuel consumption, engine efficiency, cylinder pressure and net heat release rate are analysed and presented. The combustion of RME as pure fuel or blended with diesel in an unmodified engine results in advanced combustion, reduced ignition delay and increased heat release rate in the initial uncontrolled premixed combustion phase. The increased in-cylinder pressure and temperature lead to increased NOx emissions while the more advanced combustion assists in the reduction of smoke compared to pure diesel combustion. The lower calorific value of RME results in increased fuel consumption but the engine thermal efficiency is not affected significantly. When similar percentages (% by volume) of exhaust gas recirculation (EGR) are used in the cases of diesel and RME, NOx emissions are reduced to similar values, but the smoke emissions are significantly lower in the case of RME. The retardation of the injection timing in the case of pure RME and 50/50 (by volume) blend with diesel results in further reduction of NOx at a cost of small increases of smoke and fuel consumption.  相似文献   

8.
In this study, performance and emissions of cottonseed oil methyl ester in a diesel engine was experimentally investigated. For the study, cottonseed oil methyl ester (CSOME) was added to diesel fuel, numbered D2, by volume of 5%(B5), 20%(B20), 50%(B50) and 75%(B75) as well as pure CSOME (B100). Fuels were tested in a single cylinder, direct injection, air cooled diesel engine. The effects of CSOME-diesel blends on engine performance and exhaust emissions were examined at various engine speeds and full loaded engine. The effect of B5, B20, B50, B75, B100 and D2 on the engine power, engine torque, bsfc's and exhaust gasses temperature were clarified by the performance tests. The influences of blends on CO, NOx, SO2 and smoke opacity were investigated by emission tests. The experimental results showed that the use of the lower blends (B5) slightly increases the engine torque at medium and higher speeds in compression ignition engines. However, there were no significant differences in performance values of B5, B20 and diesel fuel. Also with the increase of the biodiesel in blends, the exhaust emissions were reduced. The experimental results showed that the lower contents of CSOME in the blends can partially be substituted for the diesel fuel without any modifications in diesel engines.  相似文献   

9.
The performance of an internal combustion engine is affected when renewable biofuels are used instead of fossil fuels in an unmodified engine. Various engine modifications were experimented by the researchers to optimise the biofuels operated engine performance. Thermal barrier coating is one of the techniques used to improve the biofuels operated engine performance and combustion characteristics by reducing the heat loss from the combustion chamber. In this study, engine tests results on performance, combustion and exhaust emission characteristics of the biofuels operated thermal barrier coated engines were collated and reviewed. The results found in the literature were reviewed in three scenarios: (i) uncoated versus coated engine for fossil diesel fuel application, (ii) uncoated versus coated engine for biofuels (and blends) application, and (iii) fossil diesel use on uncoated engine versus biofuel (and blends) use on coated engine. Effects of injection timing, injection pressure and fuel properties on thermal barrier coatings were also discussed. The material type, thickness and properties of the coating materials used by the research community were presented. The effectiveness and durability of the coating layer depends on two key properties: low thermal conductivity and high thermal expansion coefficient. The current study showed that thermal barrier coatings could potentially offset the performance drop due to use of biofuels in the compression ignition engines. Improvements of up to 4.6% in torque, 7.8% in power output, 13.4% in brake specific fuel consumption, 15.4% in brake specific energy consumption and 10.7% in brake thermal efficiency were reported when biofuels or biofuel blends were used in the thermal barrier coated engines as compared to the uncoated engines. In coated engines, peak cylinder pressure and exhaust gas temperature were increased by up to 16.3 bar and 14% respectively as compared to uncoated condition. However, changes in the heat release rates were reported to be between ?27% and +13.8% as compared to uncoated standard engine. Reductions of CO, CO2, HC and smoke emissions were reported by up to 3.8%, 11.1%, 90.9% and 63% respectively as compared to uncoated engines. Significant decreases in the PM emissions were also reported due to use of thermal barrier coatings in the combustion chamber. In contrast, at high speed and at high load operation, increase in the CO and CO2 emissions were also reported in coated engines. Coated engines gave higher NOx emissions by about 4–62.9% as compared to uncoated engines. Combined effects of thermal barrier coatings and optimisation of fuel properties and injection parameters produced further performance and emissions advantages compared to only thermal barrier coated engines. Overall, current review study showed that application of thermal barrier coatings in compression ignition engines could be beneficial when biofuels or biofuel blends are used instead of standard fossil diesel. However, more research is needed combining coatings, types of biofuels and other engine modifications to establish a concrete conclusion on the effectiveness of the thermal barrier when biofuels are used in the compression ignition engine. Reduction of NOx emissions is another important R & D area.  相似文献   

10.
In order to realize a premixed compression ignition (PCI) engine, the effects of bioethanol–gas oil blends and exhaust gas recirculation (EGR) on PM–NOx trade-off have been investigated focusing on ignition delay, premixed combustion, diffusion combustion, smoke, NOx and thermal efficiency. The present experiment was done by increasing the ethanol blend ratio and ethanol and by increasing the EGR ratio in a single cylinder direct injection diesel engine. It is found that a remarkable improvement in PM–NOx trade-off can be achieved by promoting the premixing based on the ethanol blend fuel having low evaporation temperature, large latent heat and low cetane number as well, in addition, based on a marked elongation of ignition delay due to the low cetane number fuel and the low oxygen intake charge. As a result, very low levels of NOx and PM, which satisfies the 2009 emission standards imposed on heavy duty diesel engines in Japan, were achieved without deterioration of brake thermal efficiency in the PCI engine fuelled with the 50% ethanol blend diesel fuel and the high EGR ratio. It is noticed that smoke can be reduced even by increasing the EGR ratio under the highly premixed condition.  相似文献   

11.
Petroleum resources are finite and, therefore, search for their alternative non-petroleum fuels for internal combustion engines is continuing all over the world. Moreover gases emitted by petroleum fuel driven vehicles have an adverse effect on the environment and human health. There is universal acceptance of the need to reduce such emissions. Towards this, scientists have proposed various solutions for diesel engines, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as ‘dual-fuel engines’. Natural gas and bio-derived gas appear more attractive alternative fuels for dual-fuel engines in view of their friendly environmental nature. In the gas-fumigated dual-fuel engine, the primary fuel is mixed outside the cylinder before it is inducted into the cylinder. A pilot quantity of liquid fuel is injected towards the end of the compression stroke to initiate combustion. When considering a gaseous fuel for use in existing diesel engines, a number of issues which include, the effects of engine operating and design parameters, and type of gaseous fuel, on the performance of the dual-fuel engines, are important. This paper reviews the research on above issues carried out by various scientists in different diesel engines. This paper touches upon performance, combustion and emission characteristics of dual-fuel engines which use natural gas, biogas, producer gas, methane, liquefied petroleum gas, propane, etc. as gaseous fuel. It reveals that ‘dual-fuel concept’ is a promising technique for controlling both NOx and soot emissions even on existing diesel engine. But, HC, CO emissions and ‘bsfc’ are higher for part load gas diesel engine operations. Thermal efficiency of dual-fuel engines improve either with increased engine speed, or with advanced injection timings, or with increased amount of pilot fuel. The ignition characteristics of the gaseous fuels need more research for a long-term use in a dual-fuel engine. It is found that, the selection of engine operating and design parameters play a vital role in minimizing the performance divergences between an existing diesel engine and a ‘gas diesel engine’.  相似文献   

12.
Hydrogen (H2), being carbon free energy carrier, is best suitable for compression ignition (CI) engines with better performance and lower carbon derived emissions. Novelty of present study is the employment of low-cost catalyst (alumina) for production of H2 reformate (hydrogen rich exhaust gas recirculation: H2EGR) in an indigenous catalytic reactor. Experimental tests were carried out on a CI engine under three conditions; base diesel, exhaust gas recirculation (EGR), and H2EGR. Results indicated that brake thermal efficiency of the engine with H2EGR was higher than EGR and comparable with base diesel operation. All carbon-based emissions including smoke emission decreased significantly with H2EGR than diesel and EGR operations. In addition, oxides of nitrogen emission (NOx) also decreased by about 46% with H2EGR than base diesel operation. It is concluded that H2EGR is a promising option for CI engines for simultaneous reduction of both NOx and smoke emissions along with the additional benefit of higher efficiency.  相似文献   

13.
This article is a condensed overview of a dimethyl ether (DME) fuel application for a compression ignition diesel engine. In this review article, the spray, atomization, combustion and exhaust emissions characteristics from a DME-fueled engine are described, as well as the fundamental fuel properties including the vapor pressure, kinematic viscosity, cetane number, and the bulk modulus. DME fuel exists as gas phase at atmospheric state and it must be pressurized to supply the liquid DME to fuel injection system. In addition, DME-fueled engine needs the modification of fuel supply and injection system because the low viscosity of DME caused the leakage. Different fuel properties such as low density, viscosity and higher vapor pressure compared to diesel fuel induced the shorter spray tip penetration, wider cone angle, and smaller droplet size than diesel fuel. The ignition of DME fuel in combustion chamber starts in advance compared to diesel or biodiesel fueled compression ignition engine due to higher cetane number than diesel and biodiesel fuels. In addition, DME combustion is soot-free since it has no carbon–carbon bonds, and has lower HC and CO emissions than that of diesel combustion. The NOx emission from DME-fueled combustion can be reduced by the application of EGR (exhaust gas recirculation). This article also describes various technologies to reduce NOx emission from DME-fueled engines, such as the multiple injection strategy and premixed combustion. Finally, the development trends of DME-fueled vehicle are described with various experimental results and discussion for fuel properties, spray atomization characteristics, combustion performance, and exhaust emissions characteristics of DME fuel.  相似文献   

14.
Though, as a renewable energy resource, alcohol fuel has many advantages in China, it is difficult for diesel engines to operate on alcohol due to its low cetane number and high latent heat of vaporization. This paper proposes an approach to its ignition problem by combining internal exhaust gas recirculation (EGR) with injection of small diesel fuel. Based on this approach, a two-stroke single-cylinder diesel engine was developed. Preliminary studies demonstrated that the engine can run on alcohol with almost zero level of smoke and low exhaust gas temperature, and that the engine operating on alcohol has lower nitrogen oxide (NOx) emissions and 2–3% higher effective thermal efficiency than that operating on diesel fuel in moderate and high load zones.  相似文献   

15.
Homogeneous charge compression ignition (HCCI) combustion mode provides very low NOx and soot emissions; however, it has some challenges associated with hydrocarbon (HC) emissions, fuel consumption, difficult control of start of ignition and bad behaviour to high loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production in diesel and HCCI combustion mode. However EGR has different effects on combustion and emissions, which are difficult to distinguish. This work is intended to characterize an engine that has been modified from the base diesel engine (FL1 906 DEUTZ-DITER) to work in HCCI combustion mode. It shows the experimental results for the modified diesel engine in HCCI combustion mode fueled with commercial diesel fuel compared to the diesel engine mode. An experimental installation, in conjunction with systematic tests to determine the optimum crank angle of fuel injection, has been used to measure the evolution of the cylinder pressure and to get an estimate of the heat release rate from a single-zone numerical model. From these the angle of start of combustion has been obtained. The performances and emissions of HC, CO and the huge reduction of NOx and smoke emissions of the engine are presented. These results have allowed a deeper analysis of the effects of external EGR on the HCCI operation mode, on some engine design parameters and also on NOx emission reduction.  相似文献   

16.
Vehicular Pollution and environmental degradation are on the rise with increasing vehicles and to stop this strict regulation have been put on vehicular emissions. Also, the depleting fossil fuels are of great concern for energy security. This has motivated the researchers to invest considerable resources in finding cleaner burning, sustainable and renewable fuels. However renewable fuels independently are not sufficient to deal with the problem at hand due to supply constraints. Hence, advanced combustion technologies such as homogeneous charge compression ignition (HCCI), low-temperature combustion (LTC), and dual fuel engines are extensively researched upon. In this context, this work investigates dual fuel mode combustion using a constant speed diesel engine, operated using hydrogen and diesel. The engine is operated at 25, 50 and 75% loads and substitution of diesel energy with hydrogen energy is done as 0, 5, 10 and 20%. The effect of hydrogen energy share (HES) enhancement on engine performance and emissions is investigated. In the tested range, slightly detrimental effect of HES on brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) is observed. Comparision of NO and NO2 emissions is done to understand the non-thermal influence of H2 on the NOx emissions. Hence, HES is found beneficial in reducing harmful emissions at low and mid loads.  相似文献   

17.
Overcoming diesel engine emissions trade-off effects, especially NOx and Bosch smoke number (BSN), requires investigation of novel systems which can potentially serve the automobile industry towards further emissions reduction. Enrichment of the intake charge with H2 + N2 containing gas mixture, obtained from diesel fuel reforming system, can lead to new generation low polluting diesel engines.  相似文献   

18.
Energy security is an important consideration for development of future transport fuels. Among the all gaseous fuels hydrogen or hydroxy (HHO) gas is considered to be one of the clean alternative fuels. Hydrogen is very flammable gas and storing and transporting of hydrogen gas safely is very difficult. Today, vehicles using pure hydrogen as fuel require stations with compressed or liquefied hydrogen stocks at high pressures from hydrogen production centres established with large investments.Different electrode design and different electrolytes have been tested to find the best electrode design and electrolyte for higher amount of HHO production using same electric energy. HHO is used as an additional fuel without storage tanks in the four strokes, 4-cylinder compression ignition engine and two-stroke, one-cylinder spark ignition engine without any structural changes. Later, previously developed commercially available dry cell HHO reactor used as a fuel additive to neat diesel fuel and biodiesel fuel mixtures. HHO gas is used to hydrogenate the compressed natural gas (CNG) and different amounts of HHO-CNG fuel mixtures are used in a pilot injection CI engine. Pure diesel fuel and diesel fuel + biodiesel mixtures with different volumetric flow rates are also used as pilot injection fuel in the test engine. The effects of HHO enrichment on engine performance and emissions in compression-ignition and spark-ignition engines have been examined in detail. It is found from the experiments that plate type reactor with NaOH produced more HHO gas with the same amount of catalyst and electric energy. All experimental results from Gasoline and Diesel Engines show that performance and exhaust emission values have improved with hydroxy gas addition to the fossil fuels except NOx exhaust emissions. The maximum average improvements in terms of performance and emissions of the gasoline and the diesel engine are both graphically and numerically expressed in results and discussions. The maximum average improvements obtained for brake power, brake torque and BSFC values of the gasoline engine were 27%, 32.4% and 16.3%, respectively. Furthermore, maximum improvements in performance data obtained with the use of HHO enriched biodiesel fuel mixture in diesel engine were 8.31% for brake power, 7.1% for brake torque and 10% for BSFC.  相似文献   

19.
Ethanol has been considered as an alternative fuel for diesel engines. On the other hand, injection timing is a major parameter that sensitively affects the engine performance and emissions. Therefore, in this study, the influence of advanced injection timing on the engine performance and exhaust emissions of a single cylinder, naturally aspirated, four stroke, direct injection diesel engine has been experimentally investigated when using ethanol‐blended diesel fuel from 0 to 15% with an increment of 5%. The original injection timing of the engine is 27° crank angle (CA) before top dead center (BTDC). The tests were conducted at three different injection timings (27, 30 and 33° CA BTDC) for 30 Nm constant load at 1800 rpm. The experimental results showed that brake‐specific energy consumption (BSEC), brake‐specific fuel consumption (BSFC), NOx and CO2 emissions increased as brake‐thermal efficiency (BTE), smoke, CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. Comparing the results with those of original injection timing, NOx emissions increased and smoke, HC and CO emissions decreased for all test fuels at the advanced injection timings. For BSEC, BSFC and BTE, advanced injection timings gave negative results for all test conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Biofuels extracted from non-edible oil is sustainable and can be used as an alternative fuel for internal combustion engines. This study presents the performance, emission and combustion characteristic analysis by using simarouba oil (obtained from Simarouba seed) as an alternative fuel along with hydrogen and exhaust gas recirculation (EGR) in a compression ignition (CI) engine operating on dual fuel mode. Simarouba biofuel blend (B20) was prepared on volumetric basis by mixing simarouba oil and diesel in the proportion of 20% and 80% (v/v), respectively. Hydrogen gas was introduced at the flow rate of 2.67 kg/min, and EGR concentration was maintained at 30% of total air introduction. Performance, combustion and emission characteristics analysis were examined with biodiesel (B20), biodiesel with hydrogen substitution and biodiesel, hydrogen with EGR and were compared with neat diesel operation. Results indicate that BTE of the engine operating with biodiesel B20 was decreased when compared to neat diesel operation. However, introducing hydrogen along with B20 blend into the combustion chamber shows a slight increase in the BTE by 1%. NOx emission was increased to 18.13% with the introduction of hydrogen than that of base fuel (diesel) operation. With the introduction of EGR, there is a significant reduction in NOx emission due to decrease in in-cylinder temperature by 19.07%. A significant reduction in CO, CO2, and smoke emissions were also noted with the introduction of both hydrogen and EGR. The ignition delay and combustion duration were increased with the introduction of hydrogen, EGR with biodiesel than neat diesel operation. Hence, the proposed biodiesel B20 with H2 and EGR combination can be applied as an alternative fuel in CI engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号