首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In this study, the hydrogen storage properties of MgH2 with the addition of K2TiF6 were investigated for the first time. The temperature-programmed desorption results showed that the addition of 10 wt% K2TiF6 to the MgH2 exhibited a lower onset desorption temperature of 245 °C, which was a decrease of about 105 °C and 205 °C compared with the as-milled and as-received MgH2, respectively. The dehydrogenation and rehydrogenation kinetics of 10 wt% K2TiF6-doped MgH2 were also significantly improved compared to the un-doped MgH2. The results of the Arrhenius plot showed that the activation energy for the hydrogen desorption of MgH2 was reduced from 164 kJ/mol to 132 kJ/mol after the addition of 10 wt% K2TiF6. Meanwhile, the X-ray diffraction analysis showed the formation of a new phase of potassium hydride and titanium hydride together with magnesium fluoride and titanium in the doped MgH2 after the dehydrogenation and rehydrogenation process. It is reasonable to conclude that the K2TiF6 additive doped with MgH2 played a catalytic role through the formation of active species of KH, TiH2, MgF2 and Ti during the ball milling or heating process. It is therefore proposed that this newly developed product works as a real catalyst for improving the hydrogen sorption properties of MgH2.  相似文献   

2.
In this work, we have investigated the hydrogen release and uptake pathways storage properties of the MgH2Na3AlH6 with a molar ratio of 4:1 and doped with 10 wt% of TiF3 using a mechanical alloying method. The doped composite was found to have a significant reduction on the hydrogen release temperature compared to the un-doped composite based on the temperature-programme-desorption result. The first stage of the onset desorption temperature of MgH2Na3AlH6 was reduced from 170 °C to 140 °C with the addition of the TiF3 additive. Three dehydrogenation steps with a total of 5.3 wt% of released hydrogen were observed for the 4MgH2Na3AlH6-10 wt% TiF3 composite. The re/dehydrogenation kinetics of 4MgH2Na3AlH6 system were significantly improved with the addition of TiF3. Kissinger analyses showed that the apparent activation energy, EA, of the 4MgH2Na3AlH6 doped composite was 124 kJ/mol, 16 kJ/mol and 34 kJ/mol lower for un-doped composite and the as-milled MgH2, respectively. It was believed that the enhancements of the MgH2Na3AlH6 hydrogen storage properties with the addition of TiF3 were due to formation of the NaF, the AlF3 and the Al3Ti species. These species may played a synergetic catalytic role in improving the hydrogenation properties of the MgH2Na3AlH6 system.  相似文献   

3.
In this study, a low-cost biomass charcoal (BC)-based nickel catalyst (Ni/BC) was introduced into the MgH2 system by ball-milling. The study demonstrated that the Ni/BC catalyst significantly improved the hydrogen desorption and absorption kinetics of MgH2. The MgH2 + 10 wt% Ni/BC-3 composite starts to release hydrogen at 187.8 °C, which is 162.2 °C lower than the initial dehydrogenation temperature of pure MgH2. Besides, 6.04 wt% dehydrogenation can be achieved within 3.5 min at 300 °C. After the dehydrogenation is completed, MgH2 + 10 wt% Ni/BC-3 can start to absorb hydrogen even at 30 °C, which achieved the absorption of 5 wt% H2 in 60 min under the condition of 3 MPa hydrogen pressure and 125 °C. The apparent activation energies of dehydrogenation and hydrogen absorption of MgH2 + 10 wt% Ni/BC-3 composites were 82.49 kJ/mol and 23.87 kJ/mol lower than those of pure MgH2, respectively, which indicated that the carbon layer wrapped around MgH2 effectively improved the cycle stability of hydrogen storage materials. Moreover, MgH2 + 10 wt% Ni/BC-3 can still maintain 99% hydrogen storage capacity after 20 cycles. XRD, EDS, SEM and TEM revealed that the Ni/BC catalyst evenly distributed around MgH2 formed Mg2Ni/Mg2NiH4 in situ, which act as a “hydrogen pump” to boost the diffusion of hydrogen along with the Mg/MgH2 interface. Meanwhile, the carbon layer with fantastic conductivity enormously accelerated the electron transfer. Consequently, there is no denying that the synergistic effect extremely facilitated the hydrogen absorption and desorption kinetic performance of MgH2.  相似文献   

4.
The chain-like carbon nanotubes (CNTs) decorated with CoFeB (CoFeB/CNTs) prepared by oxidation-reduction method is introduced into MgH2 to facilitate its hydrogen storage performance. The addition of CoFeB/CNTs enables MgH2 to start desorbing hydrogen at only 177 °C. Whereas pure MgH2 starts hydrogen desorption at 310 °C. The dehydrogenation apparent activation energy of MgH2 in CoFeB/CNTs doped-MgH2 composite is only 83.2 kJ/mol, and this is about 59.5 kJ/mol lower than that of pure MgH2. In addition, the completely dehydrogenated MgH2−10 wt% CoFeB/CNTs sample can start to absorb hydrogen at only 30 °C. At 150 °C and 5 MPa H2, the MgH2 in CoFeB/CNTs doped-MgH2 composite can absorb 6.2 wt% H2 in 10 min. The cycling kinetics can remain rather stable up to 20 cycles, and the hydrogen storage capacity retention rate is 98.5%. The in situ formation of Co3MgC, Fe, CoFe and B caused by the introduction of CoFeB/CNTs can provide active and nucleation sites for the dehydrogenation/rehydrogenation reactions of MgH2. Moreover, CNTs can provide hydrogen diffusion pathways while also enhancing the thermal conductivity of the sample. All of these can facilitate the dehydrogenation/rehydrogenation performance and cyclic stability of MgH2.  相似文献   

5.
In order to improve the hydrogenation/dehydrogenation properties of the Mg/MgH2 system, the nickel hydride complex NiHCl(P(C6H11)3)2 has been added in different amounts to MgH2 by planetary ball milling. The hydrogen storage properties of the formed composites were studied by different thermal analyses methods (temperature programmed desorption, calorimetric and pressure-composition-temperature analyses). The optimal amount of the nickel complex precursor was found to be of 20 wt%. It allows to homogeneously disperse 1.8 wt% of nickel active species at the surface of the Mg/MgH2 particles. After the decomposition of the complex during MgH2 dehydrogenation, the formed composite is stable upon cycling at low temperature. It can release hydrogen at 200 °C and absorb 6.3 wt% of H2 at 100 °C in less than 1 h. The significantly enhanced H2 storage properties are due to the impact of the highly dispersed nickel on both the kinetics and thermodynamics of the Mg/MgH2 system. The hydrogenation and dehydrogenation enthalpies were found to be of −65 and 63 kJ/mol H2 respectively (±75 kJ/mol H2 for pure Mg/MgH2) and the calculated apparent activation energies of the hydrogen uptake and release processes are of 22 and 127 kJ/mol H2 respectively (88 and 176 kJ/mol H2 for pure Mg/MgH2). The change in the thermodynamics observed in the formed composite is likely to be due to the formation of a Mg0.992Ni0.008 phase during dehydrogenation/hydrogenation cycling. The impact of another hydride nickel precursor in which chloride has been replaced by a borohydride ligand, namely NiH(BH4)(P(C6H11)3)2, is also reported.  相似文献   

6.
Magnesium hydride (MgH2) is the best candidate material to store hydrogen in the solid-state form owing to its advantages such as good reversibility, high hydrogen storage capacity (7.6 wt%), low raw material cost and abundance in the earth. Nevertheless, slow desorption/absorption kinetics and high thermodynamic stability are two issues that have constrained the commercialization of MgH2 as a solid-state hydrogen storage material. So, to boost the desorption/absorption kinetics and to alter the thermodynamics of MgH2, hafnium tetrachloride (HfCl4) was used as a catalyst in this study. Different percentages of HfCl4 (5, 10, 15 and 20 wt%) were added to MgH2 and their catalytic influences on the hydrogen storage properties of MgH2 were investigated. Results showed that the 15 wt% HfCl4-doped MgH2 sample was the best composite to enhance the hydrogen storage performance of MgH2. The onset decomposition temperature of the 15 wt% HfCl4-doped MgH2 composite was decreased by ~75 °C compared to as-milled MgH2. Meanwhile, the desorption/absorption kinetic measurements showed an improvement compared to the undoped MgH2. From the Kissinger analysis, the apparent dehydrogenation activation energy was 167.0 kJ/mol for undoped MgH2 and 102.0 kJ/mol for 15 wt% HfCl4-doped MgH2. This shows that the HfCl4 addition reduced the activation energy of the hydrogen decomposition of MgH2. The desorption enthalpy change calculated by the van't Hoff equation showed that the addition of HfCl4 to MgH2 did not affect the thermodynamic properties. Scanning electron microscopy showed that the size of the MgH2 particles decreased and there was less agglomeration after the addition of HfCl4. It is believed that the decrease in the particle size and in-situ generated MgCl2 and Hf-containing species had synergistic catalytic effects on enhancing the hydrogen storage properties of the HfCl4-doped MgH2 composite.  相似文献   

7.
To improve the hydrogen sorption kinetics of MgH2, the MoO3 nanobelts were added into MgH2 by mechanical milling, leading to fine distribution of MoO3 in the MgH2 matrix. Compared to uncatalyzed MgH2, the hydriding and dehydriding rates of MoO3-catalyzed MgH2 were significantly improved. The MgH2 doped with 2 mol% MoO3 exhibited fast dehydrogenation without activation, and the initial dehydrogenation amount of 5 wt% could be reached within 900 s at 300 °C. The dehydrogenation apparent activation energy is decreased down to 114.7 kJ/mol. The excellent catalytic effect of MoO3 originates from its specific role as fast hydrogen diffusion pathways. In the hydrogenation process, the MoO3 transformed to MoO2, resulting in the fading of catalytic activity.  相似文献   

8.
Herein, a novel flower-like Ni MOF with good thermostability is introduced into MgH2 for the first time, and which demonstrates excellent catalytic activity on improving hydrogen storage performance of MgH2. The peak dehydrogenation temperature of MgH2-5 wt.% Ni MOF is 78 °C lower than that of pure MgH2. Besides, MgH2-5 wt.% Ni MOF shows faster de/hydrogenation kinetics, releasing 6.4 wt% hydrogen at 300 °C within 600 s and restoring about 5.7 wt% hydrogen at 150 °C after dehydrogenation. The apparent activation energy for de/hydrogenation reactions are calculated to be 107.8 and 42.8 kJ/mol H2 respectively, which are much lower than that of MgH2 doped with other MOFs. In addition, the catalytic mechanism of flower-like Ni MOF is investigated in depth, through XRD, XPS and TEM methods. The high catalytic activity of flower-like Ni MOF can be attributed to the combining effect of in-situ generated Mg2Ni/Mg2NiH4, MgO nanoparticles, amorphous C and remaining layered Ni MOF. This research extends the knowledge of elaborating efficient catalysts via MOFs in hydrogen storage materials.  相似文献   

9.
Transition metal-based oxides have been proven to have a substantial catalytic influence on boosting the hydrogen sorption performance of MgH2. Herein, the catalytic action of Ni6MnO8@rGO nanocomposite in accelerating the hydrogen sorption properties of MgH2 was investigated. The MgH2 + 5 wt% Ni6MnO8@rGO composites began delivering H2 at 218 °C, with about 2.7 wt%, 5.4 wt%, and 6.6 wt% H2 released within 10 min at 265 °C, 275 °C, and 300 °C, respectively. For isothermal hydrogenation at 75 °C and 100 °C, the dehydrogenated MgH2 + 5 wt% Ni6MnO8@rGO sample could absorb 1.0 wt% and 3.3 wt% H2 in 30 min, respectively. Moreover, as compared to addition-free MgH2, the de/rehydrogenation activation energies for doped MgH2 composites were lowered to 115 ± 11 kJ/mol and 38 ± 7 kJ/mol, and remarkable cyclic stability was reported after 20 cycles. Microstructure analysis revealed that the in-situ formed Mg2Ni/Mg2NiH4, Mn, MnO2, and reduced graphene oxide synergically enhanced the hydrogen de/absorption properties of the Mg/MgH2 system.  相似文献   

10.
Bimetallic catalysts possess unique physical and chemical properties that distinct from the individual, which offer the opportunity to ameliorate the hydrogen storage properties of MgH2. Herein, a Ni3Fe catalyst homogeneously loaded on the surface of reduced graphene oxide (Ni3Fe/rGO) was prepared based on layered double hydroxide (LDH) precursor. The novel Ni3Fe/rGO nano-catalyst was subsequently doped into MgH2 to improve its hydrogen storage performance. The MgH2-5 wt.% Ni3Fe/rGO composite requires only 100 s to reach 6 wt% hydrogen capacity at 100 °C, while for MgH2 doped with 5 wt% Ni3Fe, Ni/rGO and Fe/rGO all require more than 500 s to uptake 3 wt% hydrogen under the same condition. The onset dehydrogenation temperature of the MgH2-5 wt.% Ni3Fe/rGO composite is about 185 °C, much lower than that of the MgH2 doped with 5 wt% Ni3Fe (205 °C), Ni/rGO (210 °C) and Fe/rGO (250 °C), and it can release H2 completely even in 1000 s at 275 °C. Besides, the MgH2-5 wt% Ni3Fe/rGO displays the lowest dehydrogenation apparent activation energy of 59.3 kJ/mol calculated by Kissinger equation. The synergetic effect attributing to rGO, in-situ formed active species of Mg2Ni and Fe is in charge of the excellent catalytic effect on hydrogen storage behavior of MgH2. Meanwhile, this study supplies innovative insights to design high efficiency catalysts based on the LDH precursor.  相似文献   

11.
The hydrogen absorption and desorption properties of a MgH2 – 1 mol.% Nb(V) ethoxide mixture are reported. The material was prepared by hand mixing the additive with previously ball-milled MgH2. Nb ethoxide reacts with MgH2 during heating, releasing C2H6 and H2, and producing MgO and Nb or Nb hydride. Hydriding and dehydriding are greatly enhanced by the use of the alkoxide. At 250 °C the material with Nb takes up 1.8 wt% in 30 s compared with 0.1 wt% of pure Mg, and releases 4.2 wt% in 30 min, whereas MgH2 without Nb does not appreciably desorb hydrogen. The absorption and desorption activation energies are reduced from 153 kJ/mol H2 to 94 kJ/mol H2, and from 176 kJ/mol H2 to 75 kJ/mol H2, respectively. The hydrogen sorption properties remain stable after 10 cycles at 300 °C. The kinetic improvement is attributed to the fine distribution of amorphous/nanometric NbHx achieved by the dispersion of the liquid additive.  相似文献   

12.
MgH2 is one of the most promising hydrogen storage materials due to its high capacity and low cost. In an effort to develop MgH2 with a low dehydriding temperature and fast sorption kinetics, doping MgH2 with NiCl2 and CoCl2 has been investigated in this paper. Both the dehydrogenation temperature and the absorption/desorption kinetics have been improved by adding either NiCl2 or CoCl2, and a significant enhancement was obtained in the case of the NiCl2 doped sample. For example, a hydrogen absorption capacity of 5.17 wt% was reached at 300 °C in 60 s for the MgH2/NiCl2 sample. In contrast, the ball-milled MgH2 just absorbed 3.51 wt% hydrogen at 300 °C in 400 s. An activation energy of 102.6 kJ/mol for the MgH2/NiCl2 sample has been obtained from the desorption data, 18.7 kJ/mol and 55.9 kJ/mol smaller than those of the MgH2/CoCl2, which also exhibits an enhanced kinetics, and of the pure MgH2 sample, respectively. In addition, the enhanced kinetics was observed to persist even after 9 cycles in the case of the NiCl2 doped MgH2 sample. Further kinetic investigation indicated that the hydrogen desorption from the milled MgH2 is controlled by a slow, random nucleation and growth process, which is transformed into two-dimensional growth after NiCl2 or CoCl2 doping, suggesting that the additives reduced the barrier and lowered the driving forces for nucleation.  相似文献   

13.
Currently, magnesium hydride (MgH2) as a solid-state hydrogen storage material has become the subject of major research owing to its good reversibility, large hydrogen storage capacity (7.6 wt%) and affordability. However, MgH2 has a high decomposition temperature (>400 °C) and slow desorption and absorption kinetics. In this work, BaMnO3 was synthesized using the solid-state method and was used as an additive to overcome the drawbacks of MgH2. Interestingly, after adding 10 wt% of BaMnO3, the initial desorption temperature of MgH2 decreased to 282 °C, which was 138 °C lower than that of pure MgH2 and 61 °C lower than that of milled MgH2. For absorption kinetics, at 250 °C in 2 min, 10 wt% of BaMnO3-doped MgH2 absorbed 5.22 wt% of H2 compared to milled MgH2 (3.48 wt%). Conversely, the desorption kinetics also demonstrated that 10 wt% of BaMnO3-doped MgH2 samples desorbed 5.36 wt% of H2 at 300 °C within 1 h whereas milled MgH2 only released less than 0.32 wt% of H2. The activation energy was lowered by 45 kJ/mol compared to that of MgH2 after the addition of 10 wt% of BaMnO3. Further analyzed by using XRD revealed that the formation of Mg0·9Mn0·1O, Mn3O4 and Ba or Ba-containing enhanced the performance of MgH2.  相似文献   

14.
The influence of CuFe2O4 addition on the sorption performances of MgH2 prepared by ball milling was studied for the first time. The MgH2 + 10 wt% CuFe2O4 sample exhibited an enhancement in hydrogen storage performance compared to that of as-milled MgH2, with the onset decomposition temperature decreased from 340 °C to 250 °C. Dehydrogenation kinetic result revealed that CuFe2O4-added MgH2 released around 5.3 wt% H2 within 10 min at 320 °C, while the as-milled MgH2 released below 1.0 wt% H2 under the same condition. Furthermore, about 5.0 wt% H2 was absorbed at 250 °C in 30 min for the 10 wt% CuFe2O4-doped MgH2 sample. In contrast, the un-doped MgH2 only absorbed 4.0 wt% H2 at 250 °C in 30 min. From the Kissinger analysis, the apparent activation energy of as-milled MgH2 was 166.0 kJ/mol and this value decreased to 113.0 kJ/mol for 10 wt% CuFe2O4-added MgH2. The enhanced sorption performance of MgH2 in the presence of CuFe2O4 is believed to be due to the role of in situ formed Fe, Mg-Cu alloy, and MgO phases as an active species to catalyse the hydrogen storage properties of MgH2.  相似文献   

15.
Magnesium hydroxide (MgH2) has excellent reversibility and high capacity, and is one of the most promising materials for hydrogen storage in practical applications. However, it suffers from high dehydrogenation temperature and slow sorption kinetics. Rare earth hydrides and transition metals can both significantly improve the de/hydrogenation kinetics of MgH2. In this work, MgH2–Mg2NiH4–CeH2.73 is in-situ synthesized by introducing Ni@CeO2 into MgH2. The unique coating structure of Ni@CeO2 facilitates homogeneous distribution of synergetic CeH2.73 and Mg2NiH4 catalytic sites in subsequent ball milling process. The as-fabricated composite MgH2-10 wt% Ni@CeO2 powders possess superior hydrogenation/dehydrogenation characteristics, absorbing 4.1 wt% hydrogen within 60 min at 100 °C and releasing 5.44 wt% H2 within 10 min at 350 °C. The apparent activation energy of MgH2-10 wt% Ni@CeO2 is determined to be 84.8 kJ/mol and it has favorable hydrogen cycling stability with almost no decay in capacity after 10 cycles.  相似文献   

16.
In the present study, we have investigated the combined effect of different transition metals such as Ti, Fe and Ni on the de/rehydrogenation characteristics of nano MgH2. Mechanical milling of MgH2 with 5 wt% each of Ti, Fe and Ni for 24 h at 12 atm of H2 pressure lead to the formation of nano MgH2-Ti5Fe5Ni5. The decomposition temperature of nano MgH2-Ti5Fe5Ni5 is lowered by 90 °C as compared to nano MgH2 alone. It is also found that the nano MgH2-Ti5Fe5Ni5 absorbs 5.3 wt% within 15 min at 270 °C and 12 atm hydrogen pressures. However, nano MgH2 reabsorbs only 4.2 wt% under identical condition. An interesting result of the present study is that mechanical milling of MgH2 separately with Fe and Ni besides refinement in particle size also leads to the formation of alloys Mg2NiH4 and Mg2FeH6 respectively. On the other hand, when MgH2 is mechanically milled together with Ti, Fe and Ni, the dominant result is the formation of nano particles of MgH2. Moreover the activation energy for dehydrogenation of nano MgH2 co-catalyzed with Ti, Fe and Ni is 45.67 kJ/mol which is 35.71 kJ/mol lower as compared to activation energy of nano MgH2 (81.34 kJ/mol). These results are one of the most significant in regard to improvement in de/rehydrogenation characteristics of known MgH2 catalyzed through transition metal elements.  相似文献   

17.
Intermetallic TiMn2 compound was employed for improving the de/rehydrogenation kinetics behaviors of MgH2 powders. The metal hydride powders, obtained after 200 h of reactive ball milling was doped with 10 wt% TiMn2 powders and high-energy ball milled under pressurized hydrogen of 70 bar for 50 h. The cold-pressing technique was used to consolidate them into 36-green buttons with 12 mm in diameter. During consolidation, the hard TiMn2 spherical powders deeply embedded into MgH2 matrix to form homogeneous nanocomposite bulk material. The apparent activation energies of hydrogenation and dehydrogenation for the fabricated buttons were 19.3 kJ/mol and 82.9 kJ/mol, respectively. The present MgH2/10 wt% TiMn2 nanocomposite binary system possessed superior hydrogenation/dehydrogenation kinetics at 225 °C to absorb/desorb 5.1 wt% hydrogen at 10 bar/200 mbar H2 within 100 s and 400 s, respectively. This new system revealed good cyclability of achieving 414 cycles within 600 h continuously without degradations. For the present study, the consolidated buttons were used as solid-state hydrogen storage for feeding proton-exchange membrane fuel cell through a house made Ti-reactor at 250 °C. This nanocomposite system possessed good capability for providing the fuel cell with hydrogen flow at an average rate of 150 ml/min. The average current and voltage outputs were 3 A and 5.5 V, respectively.  相似文献   

18.
The hydrogen storage performances of MgH2 improved by the addition of Ni and SAPO-34 were studied in detail. The mixture of MgH2 with Ni and SAPO-34 was a physical reaction as shown by the X-ray diffraction (XRD) results. The SAPO-34 and Ni were uniformly distributed on the surface of MgH2. The thermodynamic and kinetic properties of 90MgH2/5Ni/5SAPO-34 were investigated by differential scanning calorimetry (DSC) and pressure-composition-isothermal (PCI) methods. The results showed that the dehydrogenation activation energy of 90MgH2/5Ni/5SAPO-34 decreased by 64.3 kJ/mol compared with that of MgH2. In addition, the relationship between the value of dehydrogenation heat and hydrogen content was also investigated by in-situ calorimetry. The enthalpy value of each sample in the dehydrogenation processes were calculated by in-situ calorimetry measurement. The dehydrogenation enthalpies of as-milled MgH2 and 90MgH2/5Ni/5SAPO-34 were 63.2 kJ/mol H2 and 53.6 kJ/mol H2, respectively. Thus, the co-doping of Ni and SAPO-34 contributed significantly to decrease the thermodynamic stability and improve the hydrogen sorption kinetic properties of MgH2.  相似文献   

19.
This paper reports the catalytic effects of mischmetal (Mm) and mischmetal oxide (Mm-oxide) on improving the dehydrogenation and rehydrogenation behaviour of magnesium hydride (MgH2). It has been found that 5 wt.% is the optimum catalyst (Mm/Mm-oxide) concentration for MgH2. The Mm and Mm-oxide catalyzed MgH2 exhibits hydrogen desorption at significantly lower temperature and also fast rehydrogenation kinetics compared to ball-milled MgH2 under identical conditions of temperature and pressure. The onset desorption temperature for MgH2 catalyzed with Mm and Mm-oxide are 323 °C and 305 °C, respectively. Whereas the onset desorption temperature for the ball-milled MgH2 is 381 °C. Thus, there is a lowering of onset desorption temperature by 58 °C for Mm and by 76 °C for Mm-oxide. The dehydrogenation activation energy of Mm-oxide catalyzed MgH2 is 66 kJ/mol. It is 35 kJ/mol lower than ball-milled MgH2. Additionally, the Mm-oxide catalyzed dehydrogenated Mg exhibits faster rehydrogenation kinetics. It has been noticed that in the first 10 min, the Mm-oxide catalyzed Mg (dehydrogenated MgH2) has absorbed up to 4.75 wt.% H2 at 315 °C under 15 atmosphere hydrogen pressure. The activation energy determined for the rehydrogenation of Mm-oxide catalyzed Mg is ∼62 kJ/mol, whereas that for the ball-milled Mg alone is ∼91 kJ/mol. Thus, there is a decrease in absorption activation energy by ∼29 kJ/mol for the Mm-oxide catalyzed Mg. In addition, Mm-oxide is the native mixture of CeO2 and La2O3 which makes the duo a better catalyst than CeO2, which is known to be an effective catalyst for MgH2. This takes place due to the synergistic effect of CeO2 and La2O3. It can thus be said that Mm-oxide is an effective catalyst for improving the hydrogen sorption behaviour of MgH2.  相似文献   

20.
In this paper, the hydrogen storage properties and reaction mechanism of the 4MgH2 + LiAlH4 composite system with the addition of Fe2O3 nanopowder were investigated. Temperature-programmed-desorption results show that the addition of 5 wt.% Fe2O3 to the 4MgH2 + LiAlH4 composite system improves the onset desorption temperature to 95 °C and 270 °C for the first two dehydrogenation stage, which is lower 40 °C and 10 °C than the undoped composite. The dehydrogenation and rehydrogenation kinetics of 5 wt.% Fe2O3-doped 4MgH2 + LiAlH4 composite were also improved significantly as compared to the undoped composite. Differential scanning calorimetry measurements indicate that the enthalpy change in the 4MgH2–LiAlH4 composite system was unaffected by the addition of Fe2O3 nanopowder. The Kissinger analysis demonstrated that the apparent activation energy of the 4MgH2 + LiAlH4 composite (125.6 kJ/mol) was reduced to 117.1 kJ/mol after doping with 5 wt.% Fe2O3. Meanwhile, the X-ray diffraction analysis shows the formation of a new phase of Li2Fe3O4 in the doped composite after the dehydrogenation and rehydrogenation process. It is believed that Li2Fe3O4 acts as an actual catalyst in the 4MgH2 + LiAlH4 + 5 wt.% Fe2O3 composite which may promote the interaction of MgH2 and LiAlH4 and thus accelerate the hydrogen sorption performance of the MgH2 + LiAlH4 composite system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号