首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of this study is to enhance hydrogen energy share in a RCCI engine. The engine under consideration is fueled with diesel oil and natural gas enriched with hydrogen or syngas and is set to operate at 9.4 bar gross indicated mean effective pressure (Mid- Load). The syngas used in this study consists of hydrogen and carbon monoxide which are mixed together on a volumetric ratio of 80:20. A fixed amount of diesel oil is injected per cycle into the combustion chamber of the RCCI engine. Based on two different strategies, hydrogen or syngas mixed with exhaust gas recirculation are admitted gradually along with natural gas while ensuring that always the low temperature combustion concept is fulfilled. The RCCI engine operation is simulated through commercial software coupled with chemical kinetics solver. The simulation results show that without any engine diesel knock occurrence, by adding hydrogen to natural gas, the share of hydrogen energy could be increased up to 40.43% while the engine power output is reduced only by about 1%. Also, syngas addition to natural gas causes that the share of hydrogen energy could be increased up to 27.05% while improves the engine power more than 4%. At the same time, by considering two mentioned strategies, the overall hydrocarbon fuel consumption per cycle can be reduced by up to 46.60% and 33.86%, respectively. Moreover, having the gross indicated efficiency of well over 50% and significant reduction in the engine emissions compared to RCCI combustion fueled solely with natural gas and diesel oil are achievable.  相似文献   

2.
A detailed investigation of employing landfill gas together with additives such as hydrogen or propane or both as a primary low reactivity fuel in a reactivity controlled compression ignition combustion of a diesel engine is conducted. A 3401E caterpillar single-cylinder diesel engine with a bathtub piston bowl profile is utilized to execute the study. The engine is operated at various intake pressures of 1.6, 1.9, and 2.2 bar, and runs at a fixed engine speed of 1300 rpm. For verification purposes, the conduct of the present engine running on pure methane as a low reactivity fuel is compared to that of the same engine available in the literature. Next, a numerical simulation is made to assess the performance of the present engine running on landfill gas plus the additives. Based on the obtained results, injecting either hydrogen or propane or a combination of both up to a total amount of 10% by volume to the premixed of landfill gas and air, and advancing diesel fuel injection timing of about 20–30 deg. crank angle, render the landfill gas utilization quite competitive with using methane alone. Applying an enriched landfill gas in a reactivity controlled compression ignition diesel engine, as a power generator, drastically reduces the greenhouse gas emission to the atmosphere. Also, the CO and UHC mole fraction in the exhaust gas can be eliminated by either advancing the start of diesel injection or using hydrogen or propane or both as additives. In addition, utilizing hydrogen or propane or a combination of both with the primary fuel improves the peak pressure to about 16% in comparison with that of landfill gas alone.  相似文献   

3.
A hydrogen fueled internal combustion engine has great advantages on exhaust emissions including carbon dioxide (CO2) emission in comparison with a conventional engine fueling fossil fuel. In addition, if it is compared with a hydrogen fuel cell, the hydrogen engine has some advantages on price, power density, and required purity of hydrogen. Therefore, they expect that hydrogen will be utilized for several applications, especially for a combined heat and power (CHP) system which currently uses diesel or natural gas as a fuel.A final goal of this study is to develop combustion technologies of hydrogen in an internal combustion engine with high efficiency and clean emission. This study especially focuses on a diesel dual fuel (DDF) combustion technology. The DDF combustion technology uses two different fuels. One of them is diesel fuel, and the other one is hydrogen in this study. Because the DDF engine is not customized for hydrogen which has significant flammability, it is concerned that serious problems occur in the hydrogen DDF engine such as abnormal combustion, worse emission and thermal efficiency.In this study, a single cylinder diesel engine is used with gas injectors at an intake port to evaluate performance swung the hydrogen DDF engine with changing conditions of amount of hydrogen injected, engine speed, and engine loads. The engine experiments show that the hydrogen DDF operation could achieve higher thermal efficiency than a conventional diesel operation at relatively high engine load conditions. However, it is also shown that pre-ignition with relatively high input energy fraction of hydrogen occurred before diesel fuel injection and its ignition. Therefore, such abnormal combustion limited amount of hydrogen injected. Fire-deck temperature was measured to investigate causal relationship between fire-deck temperature and occurrence of pre-ignition with changing operative conditions of the hydrogen DDF engine.  相似文献   

4.
The combustion of hydrogen–diesel blend fuel was investigated under simulated direct injection (DI) diesel engine conditions. The investigation presented in this paper concerns numerical analysis of neat diesel combustion mode and hydrogen enriched diesel combustion in a compression ignition (CI) engine. The parameters varied in this simulation included: H2/diesel blend fuel ratio, engine speed, and air/fuel ratio. The study on the simultaneous combustion of hydrogen and diesel fuel was conducted with various hydrogen doses in the range from 0.05% to 50% (by volume) for different engine speed from 1000 – 4000 rpm and air/fuel ratios (A/F) varies from 10 – 80. The results show that, applying hydrogen as an extra fuel, which can be added to diesel fuel in the (CI) engine results in improved engine performance and reduce emissions compared to the case of neat diesel operation because this measure approaches the combustion process to constant volume. Moreover, small amounts of hydrogen when added to a diesel engine shorten the diesel ignition lag and, in this way, decrease the rate of pressure rise which provides better conditions for soft run of the engine. Comparative results are given for various hydrogen/diesel ratio, engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions.  相似文献   

5.
Linear hydrogen engine is a new type of energy conversion device to supports variable compression ratio operation for clean emission. However, the new hydrogen engine using conventional spark ignition shows slow combustion speed and low thermal efficiency. This study makes a preliminary assessment to discuss the application of diesel pilot-ignition technology in linear hydrogen engine aiming to accelerate combustion and improve efficiency. A new coupling model between dynamics and thermodynamics is proposed and then iteratively calculated to give insight the interrelationship of combustion and motion in a diesel pilot-ignited linear hydrogen engine, while the effect of injection position on the hydrogen engine combustion is also investigated to make clear the feasibility of combustion optimization. The results indicate that the linear hydrogen engine is speeded by properly advancing the injection to promote combustion, and it has a positive effect on in-cylinder gas temperature, pressure and pressure rise rate, unless the injection is too early which results in higher NO emissions and aggravate the working intensity of the engine. In addition, the closer the fuel injection is to the top dead center, the incomplete combustion of hydrogen and diesel in the cylinder, the decrease of engine fuel economy and the increase of soot emissions. There is an optimal thermal efficiency of 40.7% for the LHE when it operates in the 0.8 mm injection position condition.  相似文献   

6.
Environmental benefits are one of the main motivations encouraging the use of natural gas as fuel for internal combustion engines. In addition to the better impact on pollution, natural gas is available in many areas. In this context, the present work investigates the effect of hydrogen addition to natural gas in dual fuel mode, on combustion characteristics improvement, in relation with engine performance. Various hydrogen fractions (10, 20 and 30 by v%) are examined. Results showed that natural gas enrichment with hydrogen leads in general to an improved gaseous fuel combustion, which corresponds to an enhanced heat release rate during gaseous fuel premixed phase, resulting in an increase in the in-cylinder peak pressure, especially at high engine load (4.1 bar at 70% load). The highest cumulative and rate of heat release correspond to 10% Hydrogen addition. The combustion duration of gaseous fuel combustion phase is reduced for all hydrogen blends. Moreover, this technique resulted in better combustion stability. For all hydrogen test blends, COVIMEP does not exceed 10%. However, no major effect on combustion noise was noticed and the ignition delay was not affected significantly. Regarding performance, an important improvement in energy conversion was obtained with almost all hydrogen blends as a result of improved gaseous fuel combustion. A maximum thermal efficiency of 32.5%, almost similar to the one under diesel operation, and a minimum fuel consumption of 236 g/kWh, are achieved with 10% hydrogen enrichment at 70% engine load.  相似文献   

7.
In the present work, dual fuel operation of a diesel engine has been experimentally investigated using biodiesel and hydrogen as the test fuels. Jatropha Curcas biodiesel is used as the pilot fuel, which is directly injected in the combustion chamber using conventional diesel injector. The main fuel (hydrogen) is injected in the intake manifold using a hydrogen injector and electronic control unit. In dual fuel mode, engine operations are studied at varying engine loads at the maximum pilot fuel substitution conditions. The engine performance parameters such as maximum pilot fuel substitution, brake thermal efficiency and brake specific energy consumption are investigated. On emission side, oxides of nitrogen, hydrocarbon, carbon monoxide and smoke emissions are analysed. Based on the results, it is found that biodiesel-hydrogen dual fuel engine could utilize up to 80.7% and 24.5% hydrogen (by energy share) at low and high loads respectively along with improved brake thermal efficiency. Furthermore, hydrocarbon, carbon monoxide and smoke emissions are significantly reduced compared to single fuel diesel engine operation. Exhaust gas recirculation (EGR) has also been studied with biodiesel-hydrogen dual fuel engine operations. It is found that EGR could improve the utilization of hydrogen in dual fuel engine, especially at the high loads. The effect of EGR is also found to reduce high nitrogen oxide emissions from the dual fuel engine and brake thermal efficiency is not significantly affected.  相似文献   

8.
The prime intention of this work is to provide a maximum replacement for diesel using hydrogen in a common rail direct injection equipped diesel engine. The experiment was conducted upto 5.2 kW brake power constant speed water-cooled engine. In the combustion chamber, diesel fuel was injected at a crank angle of 23⁰ bTDC, making it an ignitor for the premixed mixture of hydrogen and air. Hydrogen is injected at 6 different proportions ranging from 6 to 36 liter per min (LPM). The air and hydrogen gas were mixed homogeneously using the timed manifold injection technique, which was controlled through the in-house PC based data acquisition (DAQ) program developed on data factory. The electronic control unit helps to induct the hydrogen for a period of 211⁰ CA during the suction stroke. Performance, emission and combustion studies were made with the different levels of hydrogen injection, which proves that the 30 LPM of hydrogen provide the best results. Further, 30.65% improvement was achieved in brake thermal efficiency with 23.48% decreased brake specific energy consumption. This also helped to reduce the harmful emissions like CO, CO2, UHC and smoke by 22.3%, 14%, 32.74% and 43.86%, respectively. However, oxides of nitrogen emission level was increased by 7.3% compared to that of the diesel fuel at its maximum power output setting. The duration of the combustion also reduced due to the higher flame speed character of hydrogen. Thus, the overall results conclude that the addition of hydrogen improved the performance factors and reduced all the emission values of the common rail direct injection diesel engine at an optimum level of 30 LPM.  相似文献   

9.
This study investigates the characteristics of combustion noise from a diesel engine with hydrogen added to intake air. The engine noise with hydrogen addition of 10 vol% to the intake air was lower than that with diesel fuel alone at late diesel-fuel injection timings. A transient combustion-noise-generation model was introduced to discuss noise characteristics based on energy conversion from combustion impact to noise via structure vibration. The results show that the maximum combustion impact energy had a predominant effect on the maximum engine noise power for each cycle. Therefore, the combustion noise largely contributed to the total engine noise in an early stage of the expansion stroke. The dependences of engine noise on the diesel-fuel injection timing for different hydrogen fractions are discussed considering the characteristics of maximum combustion impact energy for each frequency.  相似文献   

10.
The proven feasibility of ammonia combustion in compression-ignition engines has led to it being considered as a carbon-free replacement for diesel fuel. Due to its high auto-ignition temperature, however, a more realistic strategy would be to aim for a step-change reduction in carbon emissions by co-fuelling a diesel engine with ammonia. In assessing this strategy, ammonia gas was introduced into the air-intake manifold of a compression-ignition engine, while diesel fuel was injected directly into the cylinder to ignite the mixture. By substituting only 3% of the air intake by ammonia, the diesel consumption and the CO2 emissions decreased by 15%. The combustion and emission characteristics were then compared when the same percentage of air intake (by mass) was substituted by either dissociated ammonia (a mixture of H2, N2 with small percentages of NH3) or pure hydrogen, to mimic the other possible forms in which the co-fuel can be delivered to the engine. The addition of pure hydrogen resulted in the best engine performance, both in terms of combustion efficiency and regulated emission quality. The thermal combustion efficiency declined by only ∼0.5% when the H2 was replaced by undissociated ammonia at low load, but N2O now appeared in the emissions. Co-fuelling the engine with dissociated ammonia may provide the ideal compromise in terms of thermal combustion efficiency and emission quality, while also providing a waste-heat recovery mechanism.  相似文献   

11.
The use of hydrogen in internal combustion engines is pointed out as an alternative to reduce greenhouse gas emissions. In applications that require high levels of torque and low engine speeds, compression ignition (CI) engines are more appropriate. However, because of the high auto-ignition temperature of hydrogen, its use in these engine types is more suitable when the dual-fuel concept is applied. This study comprehensively investigates, through experimental techniques, the use of hydrogen port-injection in a four-stroke single-cylinder CI engine operating with the renewable diesel-like fuels hydrotreated vegetable oil (HVO) and farnesane, in comparison to fossil diesel dual-fuel operation. In this sense, the present work aims to fill a gap in the literature by performing a novel analysis of dual-fuel operation with hydrogen, considering different substitution fractions, and using groundbreaking biofuels, such as HVO and farnesane. The results showed that in-cylinder pressure and temperature were increased with H2 enrichment for every pilot fuel, but green diesel fuels presented lower values than those for diesel operation. Furthermore, hydrogen port injection slightly delayed the start of combustion and increased the ignition delay, but a reduction in both premixed and diffusion combustion duration was observed. Reductions in PM, CO, and CO2 emissions were reported during H2 addition for every pilot fuel, while increased NOx was observed. Despite this increase, both HVO and farnesane decreased the emissions of this pollutant in single and dual-fuel operations, compared with fossil diesel. In addition, both renewable diesel fuels presented higher BTE than diesel for every studied H2 mass flow.  相似文献   

12.
The free-piston engine (FPE) is a new crankless engine, which operates with variable compression ratio, flexible fuel applicability and low pollution potential. A numerical model which couples with dynamic, combustion and gas exchange was established and verified by experiment to simulate the effects of different hydrogen addition on the combustion and emission of a diesel FPE. Results indicate that a small amount of hydrogen addition has a little effect on the combustion process of the FPE. However, when the ratio of hydrogen addition (RH2) is more than 0.1, the RH2 gives a positive effect on the peak in-cylinder gas pressure, temperature, and nitric oxide emission of the FPE, while soot emission decreases with the increase of hydrogen addition. Moreover, the larger RH2 induces a longer ignition delay, shorter rapid combustion period, weaker post-combustion effect, greater heat release rate, and earlier peak heat release rate for the FPE. Nevertheless, the released heat in rapid combustion period is significantly enhanced by the increase of RH2.  相似文献   

13.
ABSTRACT

In this study, the effects on combustion characteristics and emission were investigated in a direct injection diesel engine. In experimental and numerical studies, the engine was operated at 2000 rpm. The analyzes were made in the AVL-FIRE ESE Diesel part with Computational Fluid Dynamics (CFD) software. Standard combustion chamber (SCC) and Modified combustion chamber (MCC) geometry were compared in the modeling. By means of the designed MCC combustion chamber geometry, the fuel released from the injector was directed to the piston bowl area. Therefore, the mixture was homogenized and the combustion had been improved. In addition, the evaporation rate of the mixture increased with the MCC geometry. Also, lower NO and CO emissions were obtained with the MCC model compared to the SCC model. On the other hand, diesel fuel and mass 5% hydrogen fuel was used into diesel fuel as fuel in the study. The combustion process was investigated using hydrogen in different combustion chambers. The use of hydrogen as additional fuel resulted in higher combustion pressure, temperature and NO emissions. Compared to SCC type combustion chamber in the MCC type combustion chamber used diesel fuel, CO emission decreased of 6% and 3% for hydrogen-added mixture fuel. Also, compared to SCC type combustion chamber in the MCC type combustion chamber used diesel fuel, NO emission decreased of 11% and 32% for hydrogen-added mixture fuel. Moreover, flame velocity, heat release rate and flame propagation increased with the addition of hydrogen fuel.  相似文献   

14.
An experimental study is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5%, 10% and 15% (by vol.) ethanol, on the combustion and emissions of a standard, fully instrumented, four-stroke, high-speed, direct injection (HSDI), ‘Hydra’ diesel engine located at the authors’ laboratory. The tests are conducted using each of the above fuel blends or neat diesel fuel, with the engine working at a speed of 2000 rpm and at four different loads. In each test, combustion chamber and fuel injection pressure diagrams are obtained using a specially developed, high-speed, data acquisition and processing system. A heat release analysis of the experimentally obtained cylinder pressure diagrams is developed and used, with the pertinent application of the energy and state equations. From the analysis results, plots of the history in the combustion chamber of the gross heat release rate and other related parameters reveal some very interesting features, which shed light on the combustion mechanism when using these blends. Moreover, for each test, volumetric fuel consumption, exhaust smokiness and exhaust regulated gas emissions are measured. The differences in the performance and exhaust emission parameters from the baseline operation of the diesel engine, i.e., when working with neat diesel fuel, are determined and compared. The heat release analysis results for the relevant combustion mechanism, combined with the widely differing physical and chemical properties of the ethanol against those for the diesel fuel, are used to aid the correct interpretation of the observed engine behavior.  相似文献   

15.
The effect of the addition of hydrogen (H2) on the combustion process and nitric oxide (NO) formation in a H2-diesel dual fuel engine was numerically investigated. The model developed using AVL FIRE as a platform was validated against the cylinder pressure and heat release rate measured with the addition of up to 6% (vol.) H2 into the intake mixture of a heavy-duty diesel engine with exhaust gas recirculation (EGR). The validated model was applied to further explore the effect of the addition of 6%–18% (vol.) H2 on the combustion process and formation of NO in H2-diesel dual fuel engines. When the engine was at N = 1200 rpm and 70% load, the simulation results showed that the addition of H2 prolonged ignition delay, enhanced premixed combustion, and promoted diffusion combustion of the diesel fuel. The maximum peak cylinder pressure was observed with addition of 12% (vol.) H2. In comparison, the maximum peak heat release rate was observed with the addition of 16% (vol.) H2. The addition of H2 was a crucial factor dominating the increased NO emissions. Meanwhile, the addition of H2 reduced soot emissions substantially, which may be due to the reduced diesel fuel burned each cycle. Furthermore, proper combination of adding H2 with EGR can improve combustion performance and reduce NO emissions.  相似文献   

16.
Hydrogen-diesel dual-fuel operation can provide significant benefits to the performance and carbon-based emissions formation of compression-ignition engines. The wide flammability range of hydrogen allows engine operation at extremely low equivalence ratios while its high diffusivity and flame speed promote wide range combustion inside the cylinder. Nonetheless, despite the excellent properties of hydrogen for internal combustion, unburned hydrogen emissions and poor combustion efficiency have been previously observed at low-load conditions of compression ignition engines.The focus of the present study is to assess the effects of different engine operation and diesel injection parameters on the combustion efficiency of a heavy-duty dual-fuel engine while observing their interactions with the brake thermal efficiency (BTE) and emissions formation of the engine. In an attempt to reduce the unburned hydrogen rates at the exhaust of the engine, exhaust gas recirculation (EGR) and different diesel injection strategies were implemented. Statistical methods were applied in this study to reduce the experimental time.The results show a strong connection between unburned hydrogen rates, combustion and brake thermal efficiencies with the EGR rate. Higher EGR rates increase the intake charge temperature and provide improved hydrogen combustion and fuel economy. Operation of the dual-fuel engine at low-load with high EGR rate and slightly advanced main diesel injection can deliver simultaneous benefits to most of the harmful emissions and the BTE of the engine. Despite the efforts to achieve optimal engine operation at low loads, the combustion efficiency for most of the tested cases was in the range of 90%. Thus, increased hydrogen rates should be avoided as the benefits of the dual-fuel operation are weak at low-load conditions.  相似文献   

17.
Fuel injection pressure and injection timing are two extensive injection parameters that affect engine performance, combustion, and emissions. This study aims to improve the performance, combustion, and emissions characteristics of a diesel engine by using karanja biodiesel with a flow rate of 10 L per minute (lpm) of enriched hydrogen. In addition, the research mainly focused on the use of biodiesel with hydrogen as an alternative to diesel fuel, which is in rapidly declining demand. The experiments were carried out at a constant speed of 1500 rpm on a single-cylinder, four-stroke, direct injection diesel engine. The experiments are carried out with variable fuel injection pressure of 220, 240, and 260 bar, and injection timings of 21, 23, and 25 °CA before top dead center (bTDC). Results show that karanja biodiesel with enriched hydrogen (KB20H10) increases BTE by 4% than diesel fuel at 240 bar injection pressure and 23° CA bTDC injection timing. For blend KB20H10, the emissions of UHC, CO, and smoke opacity are 33%, 16%, and 28.7% lower than for diesel. On the other hand NOx emissions, rises by 10.3%. The optimal injection parameters for blend KB20H10 were found to be 240 bar injection pressure and 23 °CA bTDC injection timing based on the significant improvement in performance, combustion, and reduction in exhaust emissions.  相似文献   

18.
Extensive studies have been dedicated in the last decade to the possibility to use hydrogen in the dual-fuel mode to improve combustion characteristics and emissions of a diesel engine. The results of these studies, using pure hydrogen or hydrogen containing gas produced through water electrolysis, are notably different.The present investigation was conducted on a tractor diesel engine running with small amounts of the gas—provided by a water electrolyzer—aspirated in the air stream inducted in the cylinder. The engine was operated at light and medium loads and various speeds.It was found that the addition of HRG gas has a slight negative impact, up to 2%, on the engine brake thermal efficiency. Smoke is significantly reduced, up to 30%, with HRG enrichment, while NOx concentrations vary in both senses, up to 14%, depending on the engine operation mode. A relative small amount of HRG gas can be used with favorable effects on emissions and with a small penalty in thermal efficiency.  相似文献   

19.
There are two main reasons of alternative fuel search of scientists: environmental problems resulted from combustion of fossil fuels and limited reserves of crude oil. Biodiesel and Hydrogen (H2) are two of the most promising alternative fuels with their environmental friendly combustion profiles. The aim of this study was to evaluate vibration level of a hydroxyl (HHO) gas generator installed and diesel engine using different kinds of biodiesel fuels. In this study, at different flow rates, the effect of HHO gas addition on engine vibration performance was investigated with a Mitsubishi Canter 4D34-2A diesel engine. HHO gas introduced to the test engine via its intake manifold with 2, 4 and 6 L per minute (LPM) flow rates when the engine was fuelled with sunflower, canola, and corn biodiesels. The vibration data was collected between 1200 and 2400 rpm engine speeds by 300 rpm intervals. Finally, artificial neural network (ANN) approach was conducted in order to predict the effect of fuel properties and HHO amount on engine vibration level.  相似文献   

20.
Fischer-Tropsch (F-T) diesel fuel is characterized by a high cetane number, a near-zero sulphur content and a very low aromatic level. On the basis of the recorded incylinder pressures and injector needle lifts, the combustion characteristics of an unmodified single-cylinder direct-injection diesel engine operating on F-T diesel fuel are analyzed and compared with those of conventional diesel fuel operation. The results show that F-T diesel fuel exhibits a slightly longer injection delay and injection duration, an average of 18.7% shorter ignition delay, and a comparable total combustion duration when compared to those of conventional diesel fuel. Meanwhile, F-T diesel fuel displays an average of 26.8% lower peak value of premixed burning rate and a higher peak value of diffusive burning rate. In addition, the F-T diesel engine has a slightly lower peak combustion pressure, a far lower rate of pressure rise, and a lower mechanical load and combustion noise than the conventional diesel engine. The brake specific fuel consumption is lower and the effective thermal efficiency is higher for F-T diesel fuel operation. Translated from Journal of Xi’an Jiaotong University, 2006, 40(1): 5–9 [译自: 西安交通大学学报]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号