首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hydrogen storage properties of superalkali NLi4 decorated β12-borophene have been comprehensively investigated based on first-principles density functional calculations (DFT). It is found that the NLi4 cluster can be stably anchored on the surface of β12-borophene because of its large binding energy. The calculated Bader charge population indicates that the charges are transferred from Li atoms to the original monolayer and causes the NLi4 steady adsorbs onto the surface of β12-borophene. For H2 storage, two sides of NLi4 decorated β12-borophene can adsorb up to 24H2 molecules with an ideal H2 adsorption energy of ?0.176 eV/H2. Meanwhile, the hydrogen uptake density achieves 7.66 wt% and surpasses the target of 6.5 wt% from U.S. Department of Energy (DOE). In addition, the adsorption reasons of H2 molecules include the orbital hybridization between H2 and β12-borophene from the calculated projected density of states (PDOS) and the polarization effect of electrostatic field from the calculated charge density difference. We hope this theoretical study can encourage the experimental fabrication for hydrogen storage applications in the near future.  相似文献   

2.
    
Two-dimensional (2D) materials can be regarded as potential hydrogen storage candidates because of their splendid chemical stability and high specific surface area. Recently, a new dumbbell-like carbon nitride (C4N) monolayer with orbital hybridization of sp3 is reported. Motivated from the above exploration, the hydrogen adsorption properties of Li-decorated C4N monolayer are comprehensively investigated via first principles calculations based on the density functional theory (DFT). It is found that the Dirac points and Dirac cones exists in the Brillouin zone (BZ) from the calculated electronic structure and indicates the C4N can be used as an excellent topological material. Also, the calculated phonon spectra demonstrate that the C4N monolayer owns a strong stability. Moreover, the calculated binding energy of decorated Li atom is bigger than its cohesive energy and results in Li atoms disperse over the surface of C4N monolayer uniformly without clustering. In addition, the Li8C4N complex can capture up to 24H2 molecules with an optimal hydrogen adsorption energy of −0.281 eV/H2 and achieves the hydrogen storage density of 8.0 wt%. The ab initio molecular dynamics (AIMD) simulations suggest that the H2 molecules can be desorbed quickly at 300 K. This study reveals that Li-decorated C4N monolayer can be served as a promising hydrogen storage material.  相似文献   

3.
    
In this work, adsorption of H2 molecules on heteroborospherene C2v C4B32 decorated by alkali atoms (Li) is studied by density functional theory calculations. The interaction between Li atoms and C4B32 is found to be strong, so that it prevents agglomeration of the former. An introduced hydrogen molecule tilts toward the Li atoms and is stably adsorbed on C4B32. It is obtained that Li4C4B32 can store up to 12H2 molecules with hydrogen uptake capacity of 5.425 wt% and average adsorption energy of ?0.240 eV per H2. Dynamics simulation results show that 6H2 molecules can be successfully released at 300 K. Obtained results demonstrate that Li decorated C4B32 is a promising material for reversible hydrogen storage.  相似文献   

4.
    
Based on first−principles calculations, we investigate the possibility of the two-dimensional porous C9N4 material as for hydrogen storage, and find that the adsorption energy of H2 molecules on the pristine C9N4 is too weak to meet the requirements of hydrogen storage, whereas the adsorption on the Li−decorated sheet is relatively moderate. Each C9N4 unit cell can incorporate 6 Li atoms, of which 3 Li atoms are located above the intrinsic hole and the others are below. The unit cell can hold 14 hydrogen molecules with an average adsorption energy of −0.12 eV, which meets the reversible storage condition of hydrogen, and the gravity density reaches 7.04 wt%. Particularly, 6Li@C9N4 maintains excellent H2 storage performance under a tensile strain within 2%. The ab initio MD simulations performed at 300 K show that all 14 H2 molecules remained on the double sides of 6Li@C9N4 in the absence and presence of strain. Therefore, we predict that Li−modified C9N4 could be a potential material with excellent ductility for hydrogen storage at room temperature.  相似文献   

5.
    
Unlike modeling at other levels as described in this workshop, the role of modeling at the atomic level has its main usefulness in the selection and design of materials for high performance batteries. We describe recent progress in studies of transport mechanisms of lithium in polymer electrolytes which suggest new approaches to the search for electrolytes with higher conductivity.  相似文献   

6.
The stability and hydrogen adsorption behaviors of Mg/Mg2Ni interface were studied by first principles calculations. Results demonstrated that the interaction between Ni (from Mg2Ni compound) and Mg (from Mg metal) is the key factor stabilizing the interface, and the interface provides a medium to capture hydrogen atoms originating from the accumulation of electrons in the interface zone by the formation of the interface. Hydrogen atoms adsorbed in the interface zone tend to form covalent bonds with metal atoms (Ni and Mg atoms), which deliver negative adsorption energies in the range of ?0.831 to ?0.019 eV for most possible adsorption sites. However, the strength of the H-metal bonds depends on the environment the H located. The present study illustrates that the Mg/Mg2Ni layered structure could be a potential medium for reversible de/hydrogenation processes.  相似文献   

7.
Using first principles study, we have investigated the hydrogen storage capacity of Ca-coated B40. Our result shows that Ca prefers to adsorb on the top hollow center of heptagonal ring of B40 due to the large binding energy of ?2.820 eV. Bader charges calculation indicates that charges transfer from Ca to B40 result in an induced electric field so that H2 molecules are polarized and adsorbed onto the surface of B40 without dissociation. The Ca6B40 complex can adsorb up to 30 H2 molecules with average adsorption energy of ?0.177 eV/H2 and the hydrogen storage gravimetric density reaches up to 8.11 wt.%, higher than the goal from DOE by the year 2020. These findings will suggest a new and potential structure for hydrogen storage in the future.  相似文献   

8.
Mechanisms of dopants (Li, Na, Mg, and Al) influence on hydrogen uptake in COF-108 were investigated by means of first principles. The binding energy of dopants in COF-108 was estimated from the first principles total energy calculations. All doped systems are shown positive binding energies with the metallic state of the dopant as the reference. The lowest binding energy of 0.518 eV appeared in the Na-doped system while a large amount of energy (2.692 eV) is required for Al to dope into COF-108. Electronic structure analysis shows that dopants Li and Na move the conduction band crossing the Fermi energy level and introduce weakly bonded electrons near the Fermi energy, which may polarize the hydrogen molecules. It is expectable that interaction between hydrogen molecule and the host COF-108 could be enhanced by the polarization of hydrogen molecule. Therefore the hydrogen uptake will be improved in the doped systems. Dopant Mg slightly reduces the band gap between the valence and conduction bands, but is hard to build chemical bonds with the host atoms owing to the less overlaps between the bond peaks of Mg and the COF-108. It hardly affects the electron distributions of the COF-108 and therefore weakly changes the chemical interactions between atoms in COF-108.  相似文献   

9.
The kinetics of hydrogen absorption by magnesium bulk is affected by two main activated processes: the dissociation of the H2 molecule and the diffusion of atomic H into the bulk. In order to have fast absorption kinetics both activated processed need to have a low barrier. Here we report a systematic ab initio density functional theory investigation of H2 dissociation and subsequent atomic H diffusion on TM (= Ti, V, Zr, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces. The calculations show that doping the surface with TMs on the left of the periodic table eliminates the barrier for the dissociation of the molecule, but the H atoms bind very strongly to the TM, therefore hindering diffusion. Conversely, TMs on the right of the periodic table do not bind H, however, they do not reduce the barrier to dissociate H2 significantly. Our results show that Fe, Ni and Rh, and to some extent Co and Pd, are all exceptions, combining low activation barriers for both processes, with Ni being the best possible choice.  相似文献   

10.
The application of hydrogen as a clean energy source is based on storage of hydrogen. In metal hydrides is possible, since many metals react readily with hydrogen forming a stable metal hydride. Thus, saline hydrides such as lithium hydride have appeared as new alternatives to this, because of their high reactivity and reversibility. The first principles calculations based on density functional theory (DFT) have been used to study the physical properties of several Li–H compounds. The crystal structure, electronic properties and internal optimization parameters are treated by the LAPW method implemented in the WIEN2k code. In the present study we show the comparison of three different phases of lithium hydride compounds, in six different crystal structures, with the purpose of comparing the formation energies in all cases, and determine which is the structure, with the best structural properties for applications as hydrogen reservoir. The comparisons between the results obtained in the structures of lithium–hydride are discussed in this work.  相似文献   

11.
We investigated the minimum energy pathways and energy barriers of reversible reaction (V111 + H2?V221) based upon calculations using density functional theory. We find a comparable activation barrier of around 1.3 eV for both the dissociative chemisorption and desorption processes. The charge transfer rate from a reacting hydrogen atom to the graphene is around 0.18 e per hydrogen atom in the final state. A subsequent reaction path to recover the initial structure of V111 is realized by the migration of hydrogen atoms from V221 onto the graphene surface. The comparable energy barrier of 1.3 eV for both adsorption and desorption suggests that this novel storage and release concept has the potential to act as a hydrogen storage system for certain applications.  相似文献   

12.
    
Ab initio calculations have been carried out to investigate the adsorption, dissociation, and diffusion of atomic and molecular hydrogen on the Fe-doped ZrCo (110) surface. It is found that the adsorption of H2 on doped surface seems thermodynamically more stable with more negative adsorption energy than that on the pure surface, and the dissociation energy of H2 on doped surface is much bigger therefore. However, compared with the pure system, there are fewer adsorption sites for spontaneous dissociation. After dissociation, the higher hydrogen adsorption strength sites would promote the H atom diffusion towards them where they can permeate into the bulk further. Furthermore, the ZrCo (110) surface possesses much higher hydrogen permeability and lower hydrogen diffusivity than its corresponding ZrCo bulk. Moreover, further comparison of the present results to analogous calculations for pure surface reveals that the Fe dopant facilitates the H2 molecule dissociation. Unfortunately, this does not improve the hydrogen storage performance of ZrCo alloy due to the H atom diffusion on the surface and into bulk are prevented with higher reaction energetic barriers by doping Fe. Consequently, ZrCo (110) surface modified with Fe atoms should not be preferred as a result of its terrible hydrogen permeability. A clear and deep comprehending of the inhibiting effect of Fe dopant on the hydrogen storage of ZrCo materials from the perspective of the surface adsorption of hydrogen are obtained from the present results.  相似文献   

13.
    
Thermochemical water splitting is a promising clean method of hydrogen production of high relevance in a society heavily reliant on fossil fuels. Using evolutionary methods and density functional theory, we predict the structure and electronic properties of BiVO3. We build on previous literature to develop a framework to evaluate the thermodynamics of thermochemical water splitting cycles for hydrogen production. We use these results to consider the feasibility of BiVO3 as a catalyst for thermochemical water splitting. We show that for BiVO3, both the thermal reduction and gas splitting reactions are thermodynamically favorable under typical temperature conditions. We predict that thermochemical water splitting cycles employing BiVO3 as a catalyst produce hydrogen yields comparable to those of commonly used catalysts.  相似文献   

14.
    
We reported the hydrogen (H) interacting with the vacancy-oxygen (V–O) pairs complexes and its effect on H accumulation behavior in bcc vanadium in comparison with alone vacancies using first-principles calculations. The H interaction with interstitial O atom is weak repulsion and all interstitial sites near O atom are unstable for H. The alone mono-, di- and trivacancy defects can trap 6, 8–11 and 13 H atoms, while one V–O pair, two V–O pairs, and three V–O pairs complexes trap approximately same about 4–6 H atoms, respectively. The formation of O-vacancy pairs weakens the binding energy of the VmHn clusters, the number of trapped H atoms is drastically reduced to form nearly sized H clusters. We presented the stable configurations of various VmHn and VmOmHn complexes (with m = 1–3 and n = 1–15), the most stable configurations are the V1H2/V2H2/V3H2 clusters in alone vacancies, while there are the V1O1H/V2O2H/V3O3H clusters in the V–O complexes. In presence of alloying Ti near (VO) pair, one Ti(VO) pair complex still trap four H atoms, but the H binding strength has some changes. These results demonstrated that the existence of the multi-V-O complexes significantly reduce the growth and swelling of the H clusters.  相似文献   

15.
    
Hydrogen adsorption properties of Be/Sc doped pentalene complexes are investigated using second ordered Møller-Plesset method (MP2). In order to study the boron substitution effect, pentalene is further modified by substituting two and four boron atoms for carbon atoms at different positions and named as TBP1 and TBP2 for two boron atom substituted structures and FBP1 and FBP2 for four boron atom substituted structures. Two H2 molecules get adsorbed on each Be doped complex and having 3.25, 3.31, 3.31, 3.38 and 3.38 wt% H2 uptake capacity for C8H6Be2, TBP1Be2, TBP2Be2, FBP1Be2 and FBP2Be2 complexes respectively. All Sc doped pentalene and boron substituted pentalene complexes can interact with nine H2 molecules except TBP2Sc2 complex. The TBP2Sc2 complex can adsorb eight H2 molecules. The H2 uptake capacity is found to be 8.63, 8.73, 7.84, 8.83 and 8.83 wt% for C8H6Sc2, TBP1Sc2, TBP2Sc2, FBP1Sc2 and FBP2Sc2 complexes respectively. Gibbs free energy corrected adsorption energy plots show that the H2 adsorption on all Be doped complexes is possible at all temperatures and pressures considered here. The TBP1Sc2 complex seems to be more promising hydrogen storage material among all Sc doped complexes over a wide range of temperature and pressure. The H2 desorption temperatures obtained for the Be doped complexes are higher than the Sc doped complexes. Stability of the complexes is predicted with the help of the gap between the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals.  相似文献   

16.
Two-dimensional Janus monolayers have great potential to solve the increasing energy crisis and environmental pollution. In this work, we mainly study the structural, electronic and photocatalytic properties of InSe based Janus Ⅵ-Ⅲ-Ⅳ-Ⅴ monolayers, i.e. InSe-MQ (M = Si, Ge, Sn; Q = P, As) monolayers via first-principles calculations. Theoretical results reveal that they satisfy dynamic, energetic and mechanic stability. Their band gaps range from 1.76 to 2.28 eV, so that abundant visible light could be absorbed. The band edges of single-layer InSe-MQ except InSe–SiP straddle the redox potential of water, and thus the InSe-MQ monolayers except InSe–SiP are promising water-splitting photocatalysts at pH = 0. Particularly, most of InSe-MQ monolayers still have water splitting ability at less acid conditions with higher pH values. On the other hand, our theoretical results also indicate the band edges of group Ⅵ-Ⅲ-Ⅳ monolayers are to a large extent modified as the vacuum level difference between top and bottom surfaces is included, which has been neglected before and firmly collaborated by recalculations on the band arrangements of explored GaS-SnP and InS–SnP monolayers. Overall, this work not only defines several water-splitting photocatalysts but also paves the way to obtain reliable photocatalytic properties of the large group Ⅵ-Ⅲ-Ⅳ-Ⅴ (Ⅲ = Al, Ga, In; Ⅵ = O, S, Se, Te; Ⅳ = Si, Ge, Sn; Ⅴ = N, P, As) monolayers.  相似文献   

17.
    
  相似文献   

18.
The development and design of efficient photoelectric catalysts is of great significance for environmental friendliness. This paper is devoted to finding a new two-dimensional van der Waals heterojunction to realize hydrogen production from water splitting. Based on first-principles calculations, a direct type-Z C3N/WS2 heterojunction was successfully designed by combining highly active two-dimensional transition metal dichalcogenides (TMDs) with C3N similar in structure to graphene. The staggered band structure of the direct Z-scheme and high carrier mobility facilitates the efficient separation of photogenerated electron and hole pairs. More importantly, the C3N/WS2 direct Z-type heterojunction can perfectly realize total water splitting from pH = 0 to pH = 7. What's more, the Gibbs free energy and overpotential demonstrate the excellent hydrogen evolution capability and the oxygen evolution capacity of the material. In summary, these studies provide new ideas for designing high-performance photoelectric catalysts for visible-light water splitting.  相似文献   

19.
Hydrogen induced modifications to the structural, electronic and bonding properties of HfNi are investigated by performing first principles calculations. The full-potential linearized augmented plane waves (FP-LAPW) code based on the density functional theory (DFT) was used. The charge transfer and bonding between the constituent atoms is examined by means of the Bader's atoms in molecule (AIM) theory. The calculated enthalpies of formation of HfNi, HfNiH and HfNiH3 are −53.5 kJ/mol atom, −17.3 kJ/molH and −34.6 kJ/molH. They are found to be in a good agreement with the experimental and semi-empirical values. The calculated stability of the hydrides is in agreement with their hydrogen absorption ability.  相似文献   

20.
    
Carbon deposition mechanisms at the Ni/YSZ interface in the CH4 environment were studied through microscale observation and density functional theory calculation. SEM and STEM observation showed that carbon deposition occurred at some Ni/YSZ interfaces but was not found at others at the early stage. The carbon deposition in the calculation was modeled by absorbing and bonding CH fragments, and the impact of vacancy configuration at the Ni/YSZ interfaces was studied using the Vienna Ab-initio Simulation Package code. Consequently, the CH–CH bonding barrier was approximately 0.6 eV in the Ni/YSZ, which is lower than the CH cleavage barrier at the last step of CH4 decomposition, indicating that CH–CH bonding occurred as the nascent carbon deposition. Some vacancy configurations made the CH fragments absorption energy more stable mainly because the CH adsorption increased the adhesion bonding force between Ni and YSZ, leading to a stable interface structure. Calculations showed the carbon growth mechanisms at the Ni/YSZ interface, illustrating why the Ni/YSZ interface had a different reactivity against carbon deposition at the atomic scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号