首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermoelectric generator has been an attractive alternative power source to operate a wireless sensor node. Usually, inorganic compounds are most often used in thermoelectric devices, and hence, are extensively studied due to their superior thermoelectric performance. We have investigated a novel interfacial technique to fabricate a hybrid film of highly conductive PEDOT:PSS (poly 3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and graphene. Organic materials PEDOT doped with PSS exhibits outstanding electrical properties due to its high conductivity, low bandgap, and energy migration. Furthermore, we utilized graphene fabricated by rapid thermal chemical vapor deposition (RTCVD) as a thermoelectric material. Our results show that the interfacial technique between substrate and hybrid film could be clearly improved due to the UV plasma treatment. The thermoelectric hybrid film of PEDOT:PSS and RTCVD graphene (P/RTG) exhibited an enhanced power factor of 56.28 μW m−1 K−2 with a Seebeck coefficient of 54.0 μV K−1.  相似文献   

2.
An effective way to tailor the physicochemical properties of graphene film is developed by combining colloidal suspensions of reduced graphene oxide (rG‐O) nanosheets and exfoliated layered titanate nanosheets for the fabrication of freestanding hybrid films comprised of stacked and overlapped nanosheets. A flow‐directed filtration of such mixed colloidal suspensions yields freestanding hybrid films comprised of strongly‐coupled rG‐O and titanate nanosheets with tunable chemical composition. This is the first example of highly flexible hybrid films composed of graphene and metal oxide nanosheets. The intimate incorporation of layered titanate nanosheets into the graphene film gives rise not only to an increase of mechanical strength but also to increased surface roughness, chemical stability, and hydrophilicity; thus, the physicochemical properties of the graphene film can be tuned by hybridization with inorganic nanosheets. These freestanding hybrid films of rG‐O‐layered titanate show unprecedentedly high antibacterial property, resulting in the complete sterilization of Escherichia coli O157:H7 (≈100%) in the very short time of 15 min. The antibacterial activity of the hybrid film is far superior to that of the pure graphene film, underscoring the beneficial effect of the layered metal oxide nanosheets in improving the functionality of the graphene film.  相似文献   

3.
This work presents a simple, low-cost and practical inkjet-printing technique for fabricating an innovative flexible gas sensor made of graphene–poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composite film with high uniformity over a large area. An electronic ink prepared by graphene dispersion in PEDOT:PSS conducting polymer solution is inkjet-printed on a transparency substrate with prefabricated electrodes and investigated for ammonia (NH3) detection at room temperature. Transmission electron microscopy, Fourier transform infrared spectroscopy, UV–visible spectrometer and Raman characterizations confirm the presence of few-layer graphene in PEDOT:PSS polymer matrix and the present of π–π interactions between graphene and PEDOT:PSS. The ink-jet printed graphene–PEDOT:PSS gas sensor exhibits high response and high selectivity to NH3 in a low concentration range of 25–1000 ppm at room temperature. The attained gas-sensing performance may be attributed to the increased specific surface area by graphene and enhanced interactions between the sensing film and NH3 molecules via π electrons network. The NH3-sensing mechanisms of the flexible printed gas sensor based on chemisorbed oxygen interactions, direct charge transfers and swelling process are highlighted.  相似文献   

4.
The synthesis and preparation of a new type of graphene composite material suitable for spin‐coating into conductive, transparent, and flexible thin film electrodes in ambient conditions is reported here for the first time. Solution‐processible graphene with diameter up to 50 μm is synthesized by surfactant‐assisted exfoliation of graphite oxide and in situ chemical reduction in a large quantity. Spin‐coating the mixing solution of surfactant‐functionalized graphene and PEDOT:PSS yields the graphene composite electrode (GCE) without the need for high temperature annealing, chemical vapor deposition, or any additional transfer‐printing process. The conductivity and transparency of GCE are at the same level as those of an indium tin oxide (ITO) electrode. Importantly, it exhibits high stability (both mechanical and electrical) in bending tests of at least 1000 cycles. The performance of organic light‐emitting diodes based on a GCE anode is comparable, if not superior, to that of OLEDs made with an ITO anode.  相似文献   

5.
The conductivity of a poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film can be enhanced by more than two orders of magnitude by adding a compound with two or more polar groups, such as ethylene glycol, meso‐erythritol (1,2,3,4‐tetrahydroxybutane), or 2‐nitroenthanol, to an aqueous solution of PEDOT:PSS. The mechanism for this conductivity enhancement is studied, and a new mechanism proposed. Raman spectroscopy indicates an effect of the liquid additive on the chemical structure of the PEDOT chains, which suggests a conformational change of PEDOT chains in the film. Both coil and linear conformations or an expanded‐coil conformation of the PEDOT chains may be present in the untreated PEDOT:PSS film, and the linear or expanded‐coil conformations may become dominant in the treated PEDOT:PSS film. This conformational change results in the enhancement of charge‐carrier mobility in the film and leads to an enhanced conductivity. The high‐conductivity PEDOT:PSS film is ideal as an electrode for polymer optoelectronic devices. Polymer light‐emitting diodes and photovoltaic cells fabricated using such high‐conductivity PEDOT:PSS films as the anode exhibit a high performance, close to that obtained using indium tin oxide as the anode.  相似文献   

6.
We have demonstrated an indium-tin-oxide free organic light-emitting device (OLED) with improved efficiency by doping poly (3,4-ethylene dioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) with graphene oxide (GO) as a composite anode. In comparison with a pure PEDOT:PSS anode, 55% enhancement in efficiency has been obtained for the OLEDs based on the PEDOT:PSS/GO composite anode at an optimal condition. The PEDOT:PSS/GO composite anode shows a lower hole-injection barrier, which contributes to the improved device efficiency. Moreover, both high transmittance and good surface morphology similar to that of the pure PEDOT:PSS film also contribute to the enhanced efficiency. It is obvious that composite anode will generally be applicable in organic optoelectronic devices which require smooth and transparent anode.  相似文献   

7.
To achieve the broad utilization of the full functionality of graphene (GR) in devices, a transfer method should be developed that can simplify the process without leaving residue of the insulating supporting layer on the surface of GR. Furthermore, stable GR doping without the use of an insulating polymer is required. Here, a new GR transfer method that uses a popular conducting polymer, poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), is reported as a new supporting layer for the transfer of GR films that are synthesized by chemical vapor deposition. The GR/PEDOT:PSS bilayer can be directly utilized without the removal process. Therefore, this transfer method simplifies the transfer process and solves the residue problem of conventional transfer methods. The stable doping of GR films is simultaneously achieved by using the PEDOT:PSS layer. The new GR/PEDOT:PSS hybrid electrodes are fully functional in polymer solar cells and polymer light‐emitting diodes, outperforming the conventionally transferred GR electrodes and indium tin oxide electrodes.  相似文献   

8.
A seedless solution process is developed for controllable growth of crystalline ZnO micro/nanowire arrays directly on single‐layer graphene sheets made in chemical vapor deposition (CVD). In particular, the alignment of the ZnO micro/nanowires correlates well with the density of the wires, which is determined by both the sample configuration in solution and the graphene surface cleaning. With increasing wire density, the ZnO micro/nanowire array alignment may be varied from horizontal to vertical by increasing the physical confinement. Ultraviolet photodetectors based on the vertically aligned ZnO micro/nanowires on graphene show high responsivity of 1.62 A W?1 per volt, a 500% improvement over epitxial ZnO sensors, a 300% improvement over ZnO nanoparticle sensors, and a 40% improvement over the previous best results for nanowire/graphene hybrid sensors. This seedless, floating growth process could be scaled up for large scale growth of oriented ZnO micro/nanowires on graphene at low costs.  相似文献   

9.
Here, a facial and scalable method for efficient exfoliation of bulk transition metal dichalcogenides (TMD) and graphite in aqueous solution with poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to prepare single‐ and few‐layer nanosheets is demonstrated. Importantly, these TMD nanosheets retain the single crystalline characteristic, which is essential for application in organic solar cells (OSCs). The hybrid PEDOT:PSS/WS2 ink prepared by a simple centrifugation is directly integrated as a hole extraction layer for high‐performance OSCs. Compared with PEDOT:PSS, the PEDOT:PSS/WS2‐based devices provide a remarkable power conversion efficiency due to the “island” morphology and benzoid–quinoid transition. This study not only demonstrates a novel method for preparing single‐ and few‐layer TMD and graphene nanosheets but also paves a way for their applications without further complicated processing.  相似文献   

10.
Ultrathin, freestanding polymer hybrid film with macroscopic sizes and molecular thicknesses have received significant interest due to their applications as functional devices, microsensors or nanoactuators. Herein, a 2D Janus hybrid of polymer‐grafted carbon nanotubes/graphene oxide (CNTs/GO) thin film is fabricated using microcontact printed CNTs/GO as photo active surface to grow polymer brushes by self‐initiated photografting and photopolymerization selectively from one side of CNTs/GO film. This achieved 2D Janus hybrid materials with grafted polymer layer as insulative carpet and supported CNTs/GO thin film as conductive element have the potential application as flexible and miniature electric carpet for heating micro‐/nano devices locally.  相似文献   

11.
Humidity‐driven and electrically responsive graphene/cloisite hybrid films are obtained by casting water dispersions of graphene oxide and cloisite Na+. Coupling hydrophilicity and a high water vapor barrier in a homogenous film enables to realize humidity‐driven actuators which exploit the water gradient generated across the film section under asymmetric exposure to humidity. The hybrid films are self‐standing, flexible, and exhibit fast humidity‐triggered bidirectional bending up to 75°, which is tuned by varying the relative amount of the two components. Up to 60% of the bending angle can be preserved at the steady state, providing a large and reliable response to humidity. Moreover, thermal treatment results in the reduction of graphene oxide, endowing the films with humidity‐dependent electrical conductivity, which increases from 1.5 × 10?6 S at 20% relative humidity (RH) up to 2.7 × 10?5 S at 90% RH. The films are used to realize a humidity‐sensitive electrical switching system in which the reversible actuation is due to water desorption induced by the Joule effect. Due to their ease of preparation and tunable properties, this new class of graphene‐based materials is suitable for the realization of humidity‐driven and electrically responsive actuators and sensors.  相似文献   

12.
应用混合显隐式时域有限差分(hybrid implicit-explicit finite-difference time-domain, HIE-FDTD)方法对石墨烯吸收器进行数值模拟. 通过辅助差分方程(auxiliary difference equation, ADE)将石墨烯带内电导率引入到HIE-FDTD方法中并结合共形技术对设计的新型石墨烯吸收器完成了特性分析. 数值结果表明:该吸收器在2.68 THz附近吸收率可达到99.8%,而且在太赫兹频段下可以通过控制石墨烯的化学势和圆环宽度调整该吸收器的工作频率. 本文设计的环状结构吸收器结构简单,在检测器、传感器、滤波器等太赫兹器件方面具有潜在的应用.  相似文献   

13.
A free‐standing sulfonic acid functionalized graphene oxide (fSGO)‐based electrolyte film is prepared and used in an electrochemical gas sensor, an alcohol fuel cell sensor (AFCS), for the detection of alcohol. The fSGO electrolyte film‐based AFCS detects ethanol vapor with excellent response, linearity, and sensitivity, since it possesses a high proton conductivity (58 mS cm?1 at 55 °C). An ethanol detection limit level as low as 25 ppm is achieved and high selectivity for ethanol over acetone is demonstrated. These results do not only show the promising potential of fSGO films in an electrochemical gas sensors, specifically a portable breathalyzer, but also open an alternative pathway to investigate the application of graphene derivatives in the field of gas sensors.  相似文献   

14.
Flexible, architectured, photonic nanostructures such as colloidal photonic crystals (CPCs) can serve as colorimetric strain sensors, where external applied strain leads to a noticeable color change. However, CPCs' response to strain is difficult to quantify without the use of optical spectroscopy. Integration of flexible electrical readout of CPCs' color change is a challenge due to a lack of flexible/stretchable electrical transducers. This work details a colorimetric strain sensor with optoelectrical quantification based on an integrated system of CPCs over a crumpled graphene phototransducer, which optoelectrically quantifies CPCs, response to strain. The hybrid system enables direct visual perception of strain, while strain quantification via electrical measurement of the hybrid system outperforms that of crumpled graphene strain sensors by more than 100 times. The unique combination of a photonic sensing element with a deformable transducer will allow for the development of novel, electrically quantifiable colorimetric sensors with high sensitivity.  相似文献   

15.
Functional graphene optical sensors are now viable due to the recent developments in hand‐held Raman spectroscopy and the chemical vapor deposition (CVD) of graphene films. Herein, the strain in graphene/poly (methyl methacrylate) sensor coatings is followed using Raman band shifts. The performance of an “ideal” mechanically‐exfoliated single crystal graphene flake is compared to a scalable CVD graphene film. The dry‐transferred mechanically exfoliated sample has no residual stresses, whereas the CVD sample is in compression following the solvent evaporation during its transfer. The behavior of the sensors under cyclic deformation shows an initial breakdown of the graphene‐polymer interface with the interface then stabilizing after several cycles. The Raman 2D band shift rates per unit strain of the exfoliated graphene are ≈35% higher than CVD graphene making the former more strain sensitive. However, for practical wide‐area applications, CVD graphene coatings are still viable candidates as a Raman system can be used to read the strain in any 5 μm diameter spot in the coating to an absolute accuracy of ≈0.01% strain and resolution of ≈27 microstrains (μs), which compares favorably to commercial photoelastic systems.  相似文献   

16.
Transparent conducting electrodes (TCEs) require high transparency and low sheet resistance for applications in photovoltaics, photodetectors, flat panel displays, touch screen devices and imagers. Indium tin oxide (ITO), or other transparent conductive oxides, have typically been used, and provide a baseline sheet resistance (RS) vs. transparency (T) relationship. However, ITO is relatively expensive (due to limited abundance of Indium), brittle, unstable, and inflexible; moreover, ITO transparency drops rapidly for wavelengths above 1000 nm. Motivated by a need for transparent conductors with comparable (or better) RS at a given T, as well as flexible structures, several alternative material systems have been investigated. Single‐layer graphene (SLG) or few‐layer graphene provide sufficiently high transparency (≈97% per layer) to be a potential replacement for ITO. However, large‐area synthesis approaches, including chemical vapor deposition (CVD), typically yield films with relatively high sheet resistance due to small grain sizes and high‐resistance grain boundaries (HGBs). In this paper, we report a hybrid structure employing a CVD SLG film and a network of silver nanowires (AgNWs): RS as low as 22 Ω/□ (stabilized to 13 Ω/□ after 4 months) have been observed at high transparency (88% at λ = 550 nm) in hybrid structures employing relatively low‐cost commercial graphene with a starting RS of 770 Ω/□. This sheet resistance is superior to typical reported values for ITO, comparable to the best reported TCEs employing graphene and/or random nanowire networks, and the film properties exhibit impressive stability under mechanical pressure, mechanical bending and over time. The design is inspired by the theory of a co‐percolating network where conduction bottlenecks of a 2D film (e.g., SLG, MoS2) are circumvented by a 1D network (e.g., AgNWs, CNTs) and vice versa. The development of these high‐performance hybrid structures provides a route towards robust, scalable and low‐cost approaches for realizing high‐performance TCE.  相似文献   

17.
1D poly(3,4‐ethylenedioxythiophene) (PEDOT) nanomaterials, including ellipsoidal nanoparticles, nanorods, and nanotubes, are fabricated via chemical oxidation polymerization in reverse (water‐in‐oil) microemulsions. The reverse cylindrical micelles are prepared with sodium bis(2‐ethylhexyl) sulfosuccinate (AOT) and aqueous FeCl3 solution in hexane. The morphology of the final products is determined by carefully tuning the degree of oxidation potential at the micelle surface. Notably, the fabrication of gram‐scale amounts of products is possible under optimized synthetic conditions, suggesting that this methodology is appropriate for the large‐scale production of the corresponding nanomaterials. The as‐prepared PEDOT nanomaterials are applied to the precise detection of alcohol vapors. The chemical sensors based on the PEDOT nanomaterials present excellent reversibility and reproducibility in response.  相似文献   

18.
室温下石墨烯具有电子迁移率高、比表面积大、机械强度高、化学稳定性和热稳定性优异、导电性好等独特性能,是当今最受关注的二维材料之一。与传统无机氧化物材料相比,石墨烯气体传感器具有工作温度低、能耗小、恢复性高的优点。文章对两种石墨烯气体传感器的研究进展进行了综述。根据气体选择性不同,将石墨烯气体传感器分为检测CO和CO2气体传感器。分别对其灵敏度、气体响应灵敏度和响应时间等特性进行分析对比。此研究对此类传感器的应用与推广具有一定的指导意义。  相似文献   

19.
Low electrical conductivity of PEDOT:PSS film is to some extent a limit for its wide application. To solve this problem, the high voltage electric field was used to improve the film’s electrical conductivity and its effects on the film’s structure and properties were investigated. The PEDOT:PSS film was prepared on quartz substrate with spin coating. Visible light transmittance of the prepared film was tested with UV–Visible spectroscopy and chemical structure was measured with Fourier transform Raman spectroscopy (FIRM). The surface morphology was characterized with AFM, and electrical conductivity was measured with Hall effects measurement. The results showed that with the increase of the electric field, the electrical conductivity of PEDOT:PSS film was boosted rapidly at first, and then improved slowly when the electric field was above 200 kV/m. The film’s electrical conductivity improved more than 17 times in total from 0.51 × 10–3 up to 8.92 × 10–3 S/m. However, the film’s visible light transmittance decreased only a little with the increase of the electric field, not more than 3%. In addition, despite little change in the chemical structure of the PEDOT:PSS film, its surface roughness increased significantly with the increase of the electric field intensity.  相似文献   

20.
Thermoelectric properties of hybrid films composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) and gold nanoparticles (AuNPs) stabilized with 3-mercaptopropinoic acid (Au-MPA NPs) and 6-mercaptohexanoic acid (Au-MHA NPs) were investigated. Several factors such as the size and content of the AuNPs, and the chain length of the NP stabilizer were found to influence the thermoelectric properties of the hybrid film. The Seebeck coefficient can be raised by varying the size of the Au-MPA NPs or the content of Au-MHA NPs. The enhancement in the Seebeck coefficient is suggested to be a result of reduced carrier concentration due to the increased number of AuNPs. This could be the first report on the fact that AuNPs enhance the Seebeck coefficient in PEDOT/PSS hybrid films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号