首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
This article addresses the problem of global adaptive finite‐time control for a class of p‐normal nonlinear systems via an event‐triggered strategy. A state feedback controller is first designed for the nominal system by adding a power integrator method. Then, by the skillful design of adaptive dynamic gain mechanism, a novel event‐triggered controller is constructed for uncertain nonlinear system without homogeneous growth condition. It is proved that the global finite‐time stabilization of p‐normal nonlinear systems is guaranteed and the Zeno phenomenon is excluded. Finally, two examples are presented to indicate the effectiveness of the proposed control scheme.  相似文献   

2.
This paper focuses on the analysis and the design of event‐triggering scheme for discrete‐time systems. Both static event‐triggering scheme (SETS) and adaptive event‐triggering scheme (AETS) are presented for discrete‐time nonlinear and linear systems. What makes AETS different from SETS is that an auxiliary dynamic variable satisfying a certain difference equation is incorporated into the event‐triggering condition. The sufficient conditions of asymptotic stability of the closed‐loop event‐triggered control systems under both two triggering schemes are given. Especially, for the linear systems case, the minimum time between two consecutive control updates is discussed. Also, the quantitative relation among the system parameters, the preselected triggering parameters in AETS, and a quadratic performance index are established. Finally, the effectiveness and respective advantage of the proposed event‐triggering schemes are illustrated on a practical example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a decentralized event‐based triggering mechanism for a class of nonlinear control systems is studied. It is assumed that the measurement sensors are geographically distributed and so local event generator modules are employed. Then, a novel periodic triggering condition is proposed for each module, which can potentially reduce the information exchange between subsystems compared with traditional control approaches, while maintaining closed‐loop asymptotic stability. The triggering condition parameters are designed through a convex optimization problem with LMI constraints. Finally, simulations are carried out to illustrate the performance of the introduced scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we develop a novel event‐triggered robust control strategy for continuous‐time nonlinear systems with unmatched uncertainties. First, we build a relationship to show that the event‐triggered robust control can be obtained by solving an event‐triggered nonlinear optimal control problem of the auxiliary system. Then, within the framework of reinforcement learning, we propose an adaptive critic approach to solve the event‐triggered nonlinear optimal control problem. Unlike typical actor‐critic dual approximators used in reinforcement learning, we employ a unique critic approximator to derive the solution of the event‐triggered Hamilton‐Jacobi‐Bellman equation arising in the nonlinear optimal control problem. The critic approximator is updated via the gradient descent method, and the persistence of excitation condition is necessary. Meanwhile, under a newly proposed event‐triggering condition, we prove that the developed critic approximator update rule guarantees all signals in the auxiliary closed‐loop system to be uniformly ultimately bounded. Moreover, we demonstrate that the obtained event‐triggered optimal control can ensure the original system to be stable in the sense of uniform ultimate boundedness. Finally, a F‐16 aircraft plant and a nonlinear system are provided to validate the present event‐triggered robust control scheme.  相似文献   

5.
The paper addresses the distributed event‐triggered consensus problem in directed topologies for multi‐agent systems (MAS) with general linear dynamic agents. A co‐design approach is proposed to determine parameters of the consensus controller and its event‐triggered mechanism (ETM), simultaneously. This approach guarantees asymptotic stability along with decreasing data transmission among agents. In the proposed event‐based consensus controller, each agent broadcasts data to the neighbors only at its own triggering instants; this differs from previous studies in which continuous data streams among agents were required. Furthermore, the proposed control law is based on the piecewise constant functions of the measurement values, which are updated at triggering instants. In this case the control scheme decreases the communication network usage, energy consumption, and wear of the actuator. As a result, it facilitates distributed implementation of the proposed consensus controller for real‐world applications. A theorem is proved to outline sufficient conditions to guarantee the asymptotic stability of the closed‐loop system with the event‐based consensus controller. Another theorem is also proved to show the Zeno behavior exclusion. As a case study, the proposed event‐based controller is applied for a diving consensus problem to illustrate the effectiveness of the method.  相似文献   

6.
In the theory of event‐based optimization (EBO), the decision making is triggered by events, which is different from the traditional state‐based control in Markov decision processes (MDP). In this paper, we propose a policy gradient approach of EBO. First, an equation of performance gradient in the event‐based policy space is derived based on a fundamental quantity called Q‐factors of EBO. With the performance gradient, we can find the local optimum of EBO using the gradient‐based algorithm. Compared to the policy iteration approach in EBO, this policy gradient approach does not require restrictive conditions and it has a wider application scenario. The policy gradient approach is further implemented based on the online estimation of Q‐factors. This approach does not require the prior information about the system parameters, such as the transition probability. Finally, we use an EBO model to formulate the admission control problem and demonstrate the main idea of this paper. Such online algorithm provides an effective implementation of the EBO theory in practice.  相似文献   

7.
This paper studies a Lyapunov‐based small‐gain approach on design of triggering conditions in event‐triggered control systems. The event‐triggered control closed‐loop system is formulated as a hybrid system model. Firstly, by viewing the event‐triggered control closed‐loop system as a feedback connection of two smaller hybrid subsystems, the Lyapunov‐based small‐gain theorems for hybrid systems are applied to design triggering conditions. Then, a new class of triggering condition, the safe, adjustable‐type triggering condition, is proposed to tune the parameters of triggering conditions by practical regulations. This is conducive to break the restriction of the conservation of theoretical results and improve the practicability of event‐triggered control strategy. Finally, a numerical example is given to illustrate the efficiency and the feasibility of the proposed results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The problem of event‐triggered guaranteed cost consensus of discrete‐time singular multi‐agent systems with switching topologies is investigated in this paper. To save the limited network communication bandwidth of multi‐agent systems, a novel event‐triggered networked consensus mechanism is proposed. Based on the graph theory and singular system theory, sufficient conditions of guaranteed‐cost consensus of discrete‐time singular multi‐agent systems are derived and given in the form of the linear matrix inequalities, respectively. A co‐design approach of the multi‐agent consensus gain matrix and the event‐triggered parameters is presented. Furthermore, based on the approach of second class equivalent transformation for singular systems, the cost function is determined, and an explicit expression of consensus functions is presented. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

9.
The event‐based control strategy is an effective methodology for reducing the controller update and communication over the network. In this paper, the event‐based consensus of multi‐agent systems with linear dynamics and time‐varying topology is studied. For each agent, a state‐dependent threshold with an exponentially decaying bound is presented to determine the event times, and a new event‐based dynamic feedback scheme is proposed. It is shown that the controller update for each agent is only dependent on its own event times, which reduces significantly the controller update or computation for each agent. Moreover, based on the event‐based dynamic feedback scheme and the event triggering function presented in this paper, the continuous communication among neighboring agents is avoided, and the Zeno‐behavior of the closed‐loop systems is excluded. A numerical example is given to illustrate the effectiveness of theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The emergence of networked control systems urges the digital control design to integrate communication constraints efficiently. In order to accommodate this requirement, this paper investigates the joint design of tracking problem for multi‐agent system (MAS) in the presence of resource‐limited communication channel and quantization. An event‐triggered robust learning control with quantization is firstly proposed and employed for MAS in this paper. The new event‐triggered distributed robust learning control system with the introduction of logarithmic quantization guarantees the asymptotic tracking property on the finite interval. Convergence analysis is given based on the Lyapunov direct method. Finally, numerical simulations are given to illustrate the efficacy of the event‐triggered approach compared with time‐triggered controllers.  相似文献   

11.
In this paper, dissipative synchronization problem for the Markovian jump neural networks with time‐varying delay and general transition probabilities is investigated. An event‐triggered communication scheme is introduced to trigger the transmission only when the variation of the sampled vector exceeds a prescribed threshold condition. The transition probabilities of the Markovian jump delayed neural networks are allowed to be known, or uncertain, or unknown. By employing delay system approach, a new model of synchronization error system is proposed. Applying the Lyapunov‐Krasovskii functional and integral inequality combining with reciprocal convex technique, a delay‐dependent criterion is developed to guarantee the stochastic stability of the errors system and achieve strict (Q,S,R)?α dissipativity. The event‐triggered parameters can be derived by solving a set of linear matrix inequalities. A numerical example is presented to illustrate the effectiveness of the proposed design method.  相似文献   

12.
This paper addresses the model‐based event‐triggered predictive control problem for networked control systems (NCSs). Firstly, we propose a discrete event‐triggered transmission scheme on the sensor node by introducing a quadratic event‐triggering function. Then, on the basis of the aforementioned scheme, a novel class of model‐based event‐triggered predictive control algorithms on the controller node is designed for compensating for the communication delays actively and achieving the desired control performance while using less network resources. Two cases, that is, the value of the communication delay of the first event‐triggered state is less or bigger than the sampling period, are considered separately for certain NCSs, regardless of the communication delays of the subsequent event‐triggered states. The codesign problems of the controller and event‐triggering parameter for the two cases are discussed by using the linear matrix inequality approach and the (switching) Lyapunov functional method. Furthermore, we extended our results to the NCSs with systems uncertainties. Finally, a practical ball and beam system is studied numerically to demonstrate the compensation effect for the communication delays with the proposed novel model‐based event‐triggered predictive control scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper considers the distributed event‐triggered consensus problem for multi‐agent systems with general linear dynamics under a directed graph. We propose a novel distributed event‐triggered consensus controller with state‐dependent threshold for each agent to achieve consensus. In this strategy, continuous communication in both controller update and triggering condition monitoring is not required, which means the proposed strategy is fully continuous communication free. Each agent only needs to monitor its own state continuously to determine if the event is triggered. Additionally, the approach shown here provides consensus with guaranteed positive inter‐event time intervals. Therefore, there is no Zeno behavior under the proposed consensus control algorithm. Finally, numerical simulations are given to illustrate the theoretical results.  相似文献   

14.
15.
In this paper, we proposed a new hybrid control algorithm to achieve leader–follower flocking in multi‐agent systems. In the algorithm, the position is transmitted continuously, whereas the velocity is utilized discretely, which is governed by a distributed event‐triggered mechanism, and the neighbors' velocity is not required to detect the event‐triggered condition for each agent. It is shown that stable flocking is achieved asymptotically while the connectivity of networks is preserved. A numerical example is provided to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The problem of H control for networked Markovian jump system under event‐triggered scheme is studied in this paper. In order to reduce the utilization of limited network bandwidth, a dynamic discrete event‐triggered scheme to choose the transmitted data is designed. A Markovian jump time‐delay system model is employed to describe the event‐triggered scheme and the network related behavior, such as transmission delay, data package dropout, and disorder. Furthermore, a sufficient condition is derived to guarantee that the resulting closed‐loop system is stable and has a prescribed performance index. A co‐design method for the H controller and the event‐triggered scheme is then proposed. The effectiveness and potential of the theoretic results obtained are illustrated by a simulation example. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
This paper proposes a novel adaptive backstepping control method for parametric strict‐feedback nonlinear systems with event‐sampled state and input vectors via impulsive dynamical systems tools. In the design procedure, both the parameter estimator and the controller are aperiodically updated only at the event‐sampled instants. An adaptive event sampling condition is designed to determine the event sampling instants. A positive lower bound on the minimal intersample time is provided to avoid Zeno behavior. The closed‐loop stability of the adaptive event‐triggered control system is rigorously proved via Lyapunov analysis for both the continuous and jump dynamics. Compared with the periodic updates in the traditional adaptive backstepping design, the proposed method can reduce the computation and the transmission cost. The effectiveness of the proposed method is illustrated using 2 simulation examples.  相似文献   

18.
An event‐triggered observer‐based output feedback control issue together with triggered input is investigated for a class of uncertain nonlinear systems subject to unknown external disturbances. Two separate event‐triggered conditions are located on the measurement channel and control channel, respectively. An event‐triggered extended state observer (ETESO) is employed to estimate unmeasurable states and compensate uncertainties and disturbances in real time while it is not required for real‐time output measurement. Then, combined with backstepping method and active disturbance rejection control, an output feedback control scheme is proposed, where an event‐triggered input is developed for reducing the communication rate between the controller and the actuator. The triggered instants are determined by a time‐varying event‐triggered condition. Two simulations, including a numerical example and an permanent‐magnet motor, are illustrated to verify the effectiveness of the proposed schemes.  相似文献   

19.
In this work, we study the performance‐guaranteed event‐triggered control for a class of uncertain nonlinear systems in strict‐feedback form subject to input saturation and output constraint. The prescribed performance (ie, convergence rate, tracking error accuracy) and output constraint are firstly taken into account for nonlinear systems with event‐triggered input. By blending a speed transformation into the barrier Lyapunov function and introducing an intermediate variable to the system, two different event‐triggered control schemes are proposed for systems with and without saturation, respectively. Each scheme has two rules to determine triggering time sequences, one for control signal updating and the other for control signal transmission with the latter being a subsequence of the first. Meanwhile, it is proved that the tracking error converges to a preset compact set around zero at the prescribed decay rate and the output is maintained within a given bound at all times. Simulation verification also confirms the effectiveness of the proposed approach.  相似文献   

20.
Bilateral teleoperation systems provide a platform for human operators to remotely manipulate slave robots in engaging various tasks in remote environments. Most of the previous studies in bilateral teleoperation were developed under continuous transmission or periodic communication with fixed data exchanging rates. This paper presents control schemes for bilateral teleoperation systems using nonperiodic event‐driven communication. By using P‐like and PD‐like controllers, this study proposes triggering conditions for teleoperators to reduce network access frequency so that robots only transmit output signals when necessary. Stability and position tracking of the control system are studied, and nonzero minimum interevent time is guaranteed. The proposed event‐driven teleoperation is studied with a velocity estimator to avoid the requirement of velocity information in the controller and triggering condition. Without velocity measurements, the boundedness of tracking errors and stability are ensured for teleoperation systems under event‐driven communication. Simulations and experiments are illustrated to validate the performance of the proposed event‐driven teleoperation systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号