首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This paper deals with the problem of global leader‐following consensus of a group of discrete‐time general linear systems with bounded controls. For each follower agent in the group, we construct both a bounded state feedback control law and a bounded output feedback control law. The feedback laws for each input of an agent use a multi‐hop relay protocol, in which the agent obtains the information of other agents through multi‐hop paths in the communication network. The number of hops each agent uses to obtain its information about other agents for an input is less than or equal to the sum of the number of real eigenvalues on the unit circle and the number of pairs of complex eigenvalues on the unit circle of the subsystem corresponding to the input, and the feedback gains are constructed from the adjacency matrix of the communication network. We show that these control laws achieve global leader‐following consensus when the communication topology among follower agents forms a strongly connected and detailed balanced directed graph and the leader is a neighbor of at least one follower agent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the leader‐following consensus problem of uncertain high‐order nonlinear multi‐agent systems on directed graph with a fixed topology is studied, where it is assumed that the relative states of a follower and its neighbors are immeasurable and only the relative outputs are available. Nonlinear adaptive observers are firstly proposed for each follower to estimate the states of it and its neighbors, and an observer‐based distributed adaptive control scheme is constructed to guarantee that all followers asymptotically synchronize to a leader with tracking errors being semi‐globally uniform ultimate bounded. On the basis of algebraic graph theory and Lyapunov theory, the closed‐loop system stability analysis is conducted. Finally, numerical simulations are presented to illustrate the effectiveness and potential of the proposed new design techniques. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
多智能体系统可控性的图论刻画   总被引:1,自引:0,他引:1  
研究领航者-跟随者结构多智能体系统的可控性问题.利用松弛的等价分化刻画了系统可控性与信息拓扑结构之间的关系,为系统可控性提供了基于图论的判别方法.基于置换群理论将对称的概念推广到多领航者系统,并证明了3种图论工具(对称性、等价分化和松弛的等价分化)之间的包含关系.仿真结果验证了所提出方法的有效性.  相似文献   

4.
In this paper, we consider the optimal topology for leader‐following consensus problem of continuous‐time and discrete‐time multi‐agent systems based on linear quadratic regulator theory. For the first‐order multi‐agent systems, we propose a quadratic cost function, which is independent of the interaction graph, and find that the optimal topology is a star topology. For the second‐order multi‐agent systems, a quadratic cost function is also constructed, whereas the optimal topology for second‐order leader‐following consensus problem is an unevenly weighted star topology. The universality of these findings means that if each follower is connected with the leader, the information exchange between followers is unnecessary and insufficient. Simulation examples are provided to illustrate the effectiveness of the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper addresses the controllability of a switching network of multi‐agent systems with a leader obeying nearest‐neighbor communication rules. The leader is a particular agent acting as an external input to control other member agents. Some computationally efficient sufficient conditions for such multi‐agent systems to be controllable are derived. The results show that a multi‐agent system can be controllable even if each of its subsystem is not controllable, by appropriately selecting one of the agents as the leader and suitably designing the neighbor‐interaction rules via a switching topology. The fixed topology case is analyzed and new controllability conditions and formula of inputs for the desired formation of the network are presented. The controllability of a switching network of multi‐agent systems in the presence of communication delay is also investigated. Examples with numerical simulations are given to illustrate the theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This paper deals with the leader‐following consensus of discrete‐time multi‐agent systems subject to both position and rate saturation. Each agent is described by a discrete‐time general linear dynamic with actuator subject to position and rate saturation. A modified algebraic Riccati equation and low‐gain feedback design technique are used to construct both state feedback and output feedback control protocols. It is established that a semi‐global leader‐following consensus can be achieved when the system is asymptotically null controllable with bounded controls and a leader agent has a directed path to every follower agent. Finally, several simulations are carried out to illustrate the results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
符号网络是一类具有正负符号特征的网络.在多智能体系统中,符号网络能够描述智能体之间的合作与对抗交互关系,因此受到学者的广泛关注.本文主要研究有向符号网络的边能控性.首先,对具有符号网络的多智能体系统边动力学进行建模,得到边能控性模型.其次,从网络拓扑结构角度对边能控子空间进行定量刻画,利用有向符号网络的距离和等价划分得到能控子空间的上下界估计.进一步,讨论了符号网络边能控性与顶点能控性的关系.所得结果表明:当顶点符号图为结构非平衡时,符号网络的边能控性与顶点能控性等价.最后,通过仿真结果验证所得理论的有效性.  相似文献   

8.
This paper is concerned with the leader‐following consensus problem for multi‐agent systems consisting of one stationary leader and multiple cooperative followers, where the controlling effect of each follower depends on its own state. It is noted that the influence of diffusion among followers is taken into account and the system is modeled by reaction‐diffusion equations. With the assumption of the followers' initial states, a linear control protocol is designed. Based on algebraic graph theory, the method of energy estimates, and Sobolev embedding theorem, the sufficient conditions guaranteeing the leader‐following consensus under the proposed control protocol are provided. Numerical examples illustrate the effectiveness of the theoretical results.  相似文献   

9.
This paper studies the problem of semi‐global leader‐following output consensus of a multi‐agent system. The output of each follower agent in the system, described by a same general linear system subject to external disturbances and actuator saturation, is to track the output of the leader, described by a linear system, which also generates disturbances as the exosystem does in the classical output regulation problem. Conditions on the agent dynamics are identified, under which a low‐gain feedback‐based linear state‐control algorithm is constructed for each follower agent such that the output consensus is achieved when the communication topology among the agents is a digraph containing no loop, and the leader is reachable from any follower agent. We also extend the results to the non‐identical disturbance case. In this case, conditions based on both the agent dynamics and the communication topology are identified, under which a low‐gain feedback‐based linear state‐control algorithm is constructed for each follower agent such that the leader‐following output consensus is achieved when the communication topology among the follower agents is a strongly connected and detailed balanced digraph, and the leader is a neighbor of at least one follower. In addition, under some further conditions on the agent dynamics, the control algorithm is adapted so as to achieve semi‐global leader‐following output consensus for a jointly connected undirected graph and the leader reachable from at least one follower. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
This article considers the controllability problem for multi-agent systems. In particular, the structural controllability of multi-agent systems under switching topologies is investigated. The structural controllability of multi-agent systems is a generalisation of the traditional controllability concept for dynamical systems, and purely based on the communication topologies among agents. The main contributions of this article are graph-theoretic characterisations of the structural controllability for multi-agent systems. It turns out that the multi-agent system with switching topology is structurally controllable if and only if the union graph 𝒢 of the underlying communication topologies is connected (single leader) or leader–follower connected (multi-leader). Finally, this article concludes with several illustrative examples and discussions of the results and future work.  相似文献   

11.
This paper considers the containment control problems for both continuous‐time and discrete‐time multi‐agent systems with general linear dynamics under directed communication topologies. Distributed dynamic containment controllers based on the relative outputs of neighboring agents are constructed for both continuous‐time and discrete‐time cases, under which the states of the followers will asymptotically converge to the convex hull formed by those of the leaders if, for each follower, there exists at least one leader that has a directed path to that follower. Sufficient conditions on the existence of these dynamic controllers are given. Static containment controllers relying on the relative states of neighboring agents are also discussed as special cases. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, distributed leader–follower control algorithms are presented for linear multi‐agent systems based on output regulation theory and internal model principle. By treating a leader to be followed as an exosystem, the proposed framework can be used to generalize existing multi‐agent coordination solutions to allow the identical agents to track an active leader with different dynamics and unmeasurable variables. Moreover, the obtained results for multi‐agent coordination control are an extension of previous work on centralized and decentralized output regulation to a distributed control context. Necessary and sufficient conditions for the distributed output regulation problem are given. Finally, distributed output regulation of some classes of multi‐agent systems with switching interconnection topologies are discussed via both static and dynamic feedback. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with the fixed‐time coordinated tracking problem for a class of nonlinear multi‐agent systems under detail‐balanced directed communication graphs. Different from conventional finite‐time coordinated tracking strategies, the fixed‐time approach developed in this paper guarantees that a settling time bound is prescribed without dependence on initial states of agents. First, for the case of a single leader, a distributed protocol based on fixed‐time stability techniques is proposed for each follower to accomplish the consensus tracking in a fixed time. Second, in the presence of multiple leaders, a new distributed protocol is proposed such that states of followers converge to the dynamic convex hull spanned by those of leaders in a fixed time. In addition, for a class of linear multi‐agent systems, sufficient conditions that guarantee the fixed‐time coordinated tracking are provided. Finally, numerical simulations are given to demonstrate the effectiveness of the theoretical results.  相似文献   

14.
This paper is concerned with the mean square node‐to‐node consensus tracking problem for multi‐agent systems with nonidentical nonlinear dynamics and directed topologies. The randomly occurred uncertainties in the sampling devices may result in stochastically varied sampling periods, which lead to the investigation of node‐to‐node consensus problem under stochastic sampling. By employing the input‐delay method and discontinuous Lyapunov functional approach, it arrives at some sufficient conditions under which the state of each follower can track that of the corresponding leader asymptotically in the mean square sense. Finally, some numerical simulations are provided to verify the effectiveness of the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper studies the semi‐global containment control problem for a group of general linear systems in the presence of actuator position and rate saturation. Both a state feedback containment control algorithm and an output feedback containment algorithm are constructed for each follower agent in the system by using low gain approach. We show that the states of all follower agents will converge to the convex hull formed by the leader agents asymptotically under these control algorithms when the communication topology among follower agents is a connected undirected graph and each leader agent is a neighbor of at least one follower agent. Simulation results illustrate the theoretical results.  相似文献   

16.
In this paper, an efficient framework is proposed to the consensus and formation control of distributed multi‐agent systems with second‐order dynamics and unknown time‐varying parameters, by means of an adaptive iterative learning control approach. Under the assumption that the acceleration of the leader is unknown to any follower agents, a new adaptive auxiliary control and the distributed adaptive iterative learning protocols are designed. Then, all follower agents track the leader uniformly on [0,T] for consensus problem and keep the desired distance from the leader and achieve velocity consensus uniformly on [0,T] for the formation problem, respectively. The distributed multi‐agent coordinations performance is analyzed based on the Lyapunov stability theory. Finally, simulation examples are given to illustrate the effectiveness of the proposed protocols in this paper.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In this article, we investigate the controllability of multi-agent systems with leaders as control inputs, where the interconnection is directed and weighted. We employ weight-balanced partition to classify the interconnection graphs, and study the controllable subspaces with given nontrivial weight-balanced partition. We also provide two necessary and sufficient graph conditions on structural controllability and strong structural controllability. Moreover, we consider the effect of the zero row-sum restrictions of the system matrices on structural controllability.  相似文献   

18.
This paper studies flocking algorithms for multi‐agent systems with directed switching velocity interaction topologies. It is assumed that the position information of each agent is available for agents within its neighborhood region of radius r, however, they communicate the velocity information between each other through unidirectional links modeled by a particular class of directed topologies. A new energy function is defined to analyze the global stability and a sufficient condition is derived for asymptotic flocking in the face of switching topologies. The proposed control strategy guarantees the achievement of desired formations, while avoiding collisions among agents. It also ensures velocity agreement under suitable conditions in a variety of real networks with greatly reduced velocity data exchange. Moreover, a leader‐follower framework is formulated for the described class of interaction topologies and it is shown that a more relaxed condition is required to achieve the desired performance. Finally, several simulations are performed to illustrate and confirm the theoretical results obtained.  相似文献   

19.
This paper considers the containment control problem for multi‐agent systems with general linear dynamics and multiple leaders whose control inputs are possibly nonzero and time varying. Based on the relative states of neighboring agents, a distributed static continuous controller is designed, under which the containment error is uniformly ultimately bounded and the upper bound of the containment error can be made arbitrarily small, if the subgraph associated with the followers is undirected and, for each follower, there exists at least one leader that has a directed path to that follower. It is noted that the design of the static controller requires the knowledge of the eigenvalues of the Laplacian matrix and the upper bounds of the leaders’ control inputs. In order to remove these requirements, a distributed adaptive continuous controller is further proposed, which can be designed and implemented by each follower in a fully distributed fashion. Extensions to the case where only local output information is available and to the case of multi‐agent systems with matching uncertainties are also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, multi surface sliding cooperative control scheme is presented and new multiple sliding surfaces are proposed. It is proven that, for the setup that each agent is described by a chain of integrators, where the last integrator is perturbed by a bounded disturbance, leader–follower consensus can be achieved on these sliding surfaces if the communication graph has a directed spanning tree. Also, sliding variables can be driven to the sliding surfaces in fast finite time by the nonsmooth control law. The fast finite‐time Lyapunov stability theorem, the terminal sliding control technique, and the adding a power integrator design approach are used in our proposed control. Simulation results demonstrate the effectiveness of the proposed scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号