首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bienzyme electrode with horseradish peroxidase (HRP) and glucose oxidase (GOD) multilayers was constructed based on sugar–lectin biospecific interactions for amperometric determination of phenolic compounds and aromatic amines. Atomic force microscopy (AFM) was applied to monitor the uniform layer-by-layer assembly of concanavalin A (Con A) and HRP or GOD on polyelectrolyte precursor film-modified Au electrode. Substituted phenolic compounds and aromatic amines could be determined with in situ generation of H2O2 by GOD-catalyzed oxidation of glucose. The parameters of the biosensor including the number of assembled HRP and GOD layer, and the concentrations of glucose were optimized. The linear range for the determination of catechol and p-phenyldiamine was 6.0–60.0 μmol L−1 and 7.6–68.4 μmol L−1 with detection limit of 0.9 μmol L−1 and 0.4 μmol L−1, respectively. The biosensor possessed high sensitivity and fast response for phenolic compounds and 95% of the maximum response could be reached in about 3 s. Glucose, ascorbic acid, tartaric acid, citric acid and starch exhibited no interference for the detection. The biosensor presented high stability due to the design for in situ generation of H2O2 with bienzyme system.  相似文献   

2.
The development of an amperometric sensor for the determination of reduced glutathione (GSH) is described. The sensor is based on tetrathiafulvalene–tetracyanoquinodimethane (TTF–TCNQ) incorporated into the graphite powder/Nujol oil matrix. The electrooxidation of GSH was monitored amperometrically at 200 mV versus SCE (saturated calomel electrode). The amperometric response of the sensor was linearly proportional to the GSH concentration between 20 and 300 μmol l−1, in 0.1 mol l−1 phosphate buffer (pH 8.0), containing 0.1 mol l−1 KCl and 0.5 mmol l−1 Na2H2EDTA, as supporting electrolyte.

The detection limit, considering signal/noise ratio equal three, was 4.2 μmol l−1 for GSH and the repeatability obtained as relative standard deviation was of 5.1% for a series of 10 successive measurements.  相似文献   


3.
A very sensitive, highly selective and reversible optical chemical sensor (optode) for mercury ion is described. The sensor is based on the interaction of Hg2+ with 2-mercapto-2-thiazoline (MTZ) in plasticized PVC membrane incorporating a proton-selective chromoionophore (ETH5294) and lipophilic anionic sites (sodium tetraphenylborate, NaTPB). The membranes were cast onto glass substrates and used for the determination of mercury ion in aqueous solutions by batch and flow-through methods. The sensor could be used in the range 2.0 × 10−10 to 1.5 × 10−5 M (0.04 ng mL−1 to 3 μg mL−1) Hg2+ with a detection limit of 5.0 × 10−11 M and a response time of <40 s. It can be easily and completely regenerated by dilute nitric acid solution. The sensor has been incorporated into a home-made flow-through cell for determination of mercury ion in flowing streams with improved sensitivity, precision and detection limit. The sensor showed excellent selectivity for Hg2+ with respect to several common alkali, alkaline earth and transition metal ions. The results obtained for the determination of mercury ion in river water samples using the proposed optode was found to be comparable with the well-established cold-vapor atomic absorption method.  相似文献   

4.
A novel voltammetric sensor based on chemically modified bentonite–porphyrin carbon paste electrode (MBPCE) has been introduced for the determination of trace amount of Mn(II) in wheat flour, wheat rice and vegetables. In this method Mn(II) gives well-defined voltammetric peak at the pH range of 3.5–7.5. For the preliminary screening purpose, the catalyst was prepared by modification of bentonite with porphyrin and characterized by thermogravimetric method (TG) and UV–vis spectroscopy. The detection limit (three times signal-to-noise) with 4 min accumulation is 1.07 × 10−7 mol L−1 Mn(II). The peak currents increases linearly with Mn(II) concentration over the range of 6.0 × 10−7 to 5.0 × 10−4 mol L−1 (r2 = 0.9959). Statistical treatment of the results gave a relative standard deviation lower than 2.30%. The chemical and instrumental parameters have been optimized and the results showed that 1000-fold excess of the additive ions had not interferences on the determination of Mn(II).  相似文献   

5.
A glassy carbon electrode (GCE) modified with a Langmuir–Blodgett (LB) film of p-tert-butylthiacalix[4]arene (TCA) has been investigated as a disposable sensor for measuring the trace levels of lead and cadmium. The possibility of determining lead and cadmium at trace levels was examined with differential pulse stripping voltammetry in the measurement step. The electrochemical response was characterized with respect to supporting electrolyte, pH of solution, accumulation time, accumulation potential, layers of the LB films, and possible interferences. Calibration plots were found to be linear in the range 2 × 10−7 to 5 × 10−5 mol l−1 (Cd2+) and 1 × 10−7 to 2.5 × 10−5 mol l−1 (Pb2+); the detection limits were 2 × 10−8 mol l−1 (Cd2+) and 8 × 10−9 mol l−1 (Pb2+). Possible recognition mechanism was also discussed. From the analysis of real samples (river, lake and tap water) it can be concluded that the method is sensitive and reproducible in determining of these elements and can be used in the analysis of natural water samples.  相似文献   

6.
A new poly(vinylchloride) (PVC) membrane electrode for trace level determination of Co2+ ions has been developed based on 5-amino-3-methylisothiazole as an ionophore, o-nitrophenyloctylether as a plasticizer and oleic acid (OA) as a good lipophilic additive. The electrode exhibits a Nernstian slope of 29.5 ± 0.2 mV/decade in a linear range of 1.0 × 10−1 to 6.3 × 10−7 M for Co2+ ions. The detection limit of this electrode is 3.9 × 10−7 M. It has a fast response time of 12 s and can be used for a period of 4 months without any divergence in potentials. The proposed electrode reveals a good selectivity for Co (II) over a wide variety of other tested cations and could be used in the pH range 3.3–9.0. The electrode was successfully applied as an indicator electrode for the potentiometric titration of cobalt ions with EDTA as well as for the direct determination of Co (II) in real samples.  相似文献   

7.
The glassy carbon electrode coated with electropolymerized methyl-red film, 1.2 × 10−6 m in thickness, (PMRE) showed high sensitivity towards Hg(II) ions. PMREs were adopted to accumulate and detect Hg(II) ions in a pH 2.56 Britton–Robinson buffer solution. Cyclic voltammogram of the accumulated Hg species on PMREs exhibited an anodic wave at 0.64 V and a cathodic wave at 0.13 V, due to the oxidation of accumulated Hg species on PMREs and the reduction of Hg(II) ions in the solution, respectively. For this heterogeneous adsorption of Hg(II) ions onto PMREs, the maximum surface concentration, adsorption equilibrium, and Gibbs energy change were evaluated to be 5.12 × 10−6 mol m−2, 3.7 × 105 l mol−1, and −30.1 kJ mol−1, respectively. The anodic peak current at 0.64 V was linear with the concentration of Hg(II) ions in the range of 1.1 × 10−10 to 1.1 × 10−7 M with a detection limit of 4.4 × 10−11 M. The proposed method was utilized successfully for the detection of Hg(II) ions in the lake water.  相似文献   

8.
In this work we report the development of a highly selective and sensitive Gd(III) membrane based on N-(2-pyridyl)-N′-(4-nitrophenyl)thiourea (PyTu4NO2) as an excellent neutral ion carrier. The Gd(III) sensor exhibits a Nernstian slope of 19.95 ± 0.3 mV per decade over the concentration range of 3.0 × 10−7 to 1.0 × 10−1 M, and a detection limit of 3.0 × 10−7 M of Gd(III) ions. The potentiometric response of the sensor is independent of the solution pH in the range of 4.0–9.0. It manifests advantages of low detection limit, fast response time (10 s), and most significantly, very good selectivity with respect to a number of lanthanide ions (La, Ce, Sm, and Eu ions). It can be used at least for a period of 8 weeks without any significant divergences in its potential response. To assess its analytical applicability the proposed Gd(III) sensor was successfully applied as an indicator electrode in the titration of Gd(III) ion solutions with EDTA and for the determination of the fluoride ion in two mouth wash preparations. It was also used for the direct monitoring of Gd(III) ions in binary mixtures.  相似文献   

9.
Three synthesized platinum(II) complexes, [PtR2(NN)] (R = Me, p-MeC6H4 and p-MeOC6H4; NN = 2,2′-bipyridyl), were studied to characterize their ability as an anion carrier in a PVC membrane electrode. The polymeric membrane electrodes (PME) and also coated glassy carbon electrodes (CGCE) prepared with [Pt(p-MeOC6H4)2(NN)] showed excellent response characteristics to perchlorate ions. The electrodes exhibited Nernstian responses to ClO4 ions over a wide concentration range from 5 × 10−7 to 4.0 × 10−1 M for PME and 1.5 × 10−7 to 2.7 × 10−1 M for CGCE with low detection limits (4.0 × 10−7 M for PME and 1.0 × 10−7 M for CGCE). The electrodes possess fast response time, satisfactory reproducibility, appropriate lifetime and, most importantly, good selectivity toward ClO4 relative to a variety of other common anions. The potentiometric response of the electrodes is independent of the pH of the test solution in the pH range 2.5–9.5. The proposed sensors were used in potentiometric determination of perchlorate ions in mineral water, urine samples and also samples containing interfering anions. The interaction of the ionophore with perchlorate ions was shown by UV–vis spectroscopy.  相似文献   

10.
This study is devoted to the evaluation of a carbon paste electrode modified by a natural 2:1 phyllosilicate clay functionalized with either amine or thiol groups as a sensor for mercury(II). Functionalization was achieved by grafting the pristine clay via its reaction with 3-aminopropyltriethoxysilane (APTES) or 3-mercaptopropyltrimethoxysilane (MPTMS), respectively. The electroanalytical procedure comprises two steps: the chemical accumulation of the analyte under open-circuit conditions followed by the electrochemical detection of the preconcentrated species using differential pulse anodic stripping voltammetry. The different parameters that govern the two steps (accumulation time, concentration of the analyte, composition of the detection medium, potential and duration of electrolysis) were studied in detail. After optimization, a linear response was obtained in the concentration range from 0.1 to 0.7 μM Hg(II). In these conditions, the detection limits of the method were found to be 8.7 × 10−8 and 6.8 × 10−8 M, respectively, for the amine- and thiol-functionalized clays, on the basis of a signal-to-noise ratio of 3. The effect of potential interference on the determination of Hg(II) by the carbon paste electrode modified with the thiol-functionalized clay was also studied and the applicability of the method to real sample analysis was evaluated.  相似文献   

11.
Myoglobin (Mb) is incorporated on a novel matrix—zirconium phosphate nanosheets (ZrPNS) and immobilized at a glassy carbon electrode surface. UV–vis spectra and electrochemical measurements show that the matrix is well biocompatible and can retain the bioactivity of immobilized Mb. The direct electron transfer between Mb and electrode exhibits a couple of well-defined redox peaks. The cathodic and anodic peaks are located at −0.340 and −0.280 V vs. Ag/AgCl, respectively. The ZrPNS can improve the electron transfer between Mb and electrode with an electron transfer constant of 5.6 s−1. Meanwhile, the catalytic ability of the protein toward the reduction of H2O2, O2, NaNO2, trichloroacetic acid (TCA) is also studied and a third-generation biosensor is subsequently fabricated. The linear range of biosensor to H2O2 is from 8 × 10−7 to 1.28 × 10−5 M with the limit detection of 1.4 × 10−7 M. The small apparent Michaelis–Menten constant (34 μM) suggests that Mb/ZrPNS film performs good affinity with H2O2. The biosensor also exhibits acceptable stability and reproducibility. This work paves a way to develop other biologic active materials in this kind of nanosheets for constructing novel biosensors.  相似文献   

12.
The perchlorate salts of nickel(II) complexes of 1,3,5,8,10,13-hexaazacyclotetradecane (1) and 1,8-tert-butyl-1,3,5,8,10,13-hexaazacyclotetradecane (2) were used in construction of PVC based membrane electrodes. These sensors show very good selectivity for ClO4 ions over a wide variety of anions. These electrodes exhibit Nernstian behavior with the slopes of 59.5 and 59.3 mV per decade for (1) and (2), respectively. The working concentration ranges of the sensors are 1.0 × 10−1–9.0 × 10−7 M (1) and 1.0 × 10−1–5.0 × 10−7 M (2) with the detection limits of 6.0 × 10−7 and 2.0 × 10−7 M, respectively. The response time of the both sensors is very fast, and can be used for 2 (I) and 12 (II) weeks in a pH range of 3.0–11.0. These electrodes were applied to the determination of perchlorate ions in wastewater and cattle urine samples.  相似文献   

13.
Complexes of nickel(II) with the ligand N,N′-bis(2,5-dihydroxybenzylidene)-1,2-diaminobenzene (NiII-DHS) can be electropolymerized onto glassy carbon surfaces in alkaline solution to give electroactive films strongly adhered on the electrode surface. In alkaline solution, these poly-[NiII-DHS]/GC films present the typical voltammetric response of a surface-immobilized redox couple, as can be anticipated for the Ni2+/Ni3+ transitions into the film. In addition, the films exhibit a potent and persistent electrocatalytic activity towards the oxidation of methanol. The electrocatalytic currents are, at least, 80 times higher than those obtained for the oxidation of methanol at electrodes modified with nickel hydroxide films in alkaline solutions. In addition, the current is proportional to the concentration of methanol from 0.050 to 0.30 μM. The detection limit and the sensitivity were found to be 26 ± 2 nM and 7.4 × 10−2 ± 6 × 10−3 A cm2 mol−1 M−1, respectively. Electrodes modified with poly-[NiII-DHS]/GC films show a moderate electrocatalytic activity towards the oxidation of other aliphatic short chain alcohols, such as: ethanol, 1-propanol, 2-propanol and n-butanol. In all cases the catalytic currents present linear dependences with the concentration of alcohol in alkaline solution. The analytical properties of these potential alcohol sensors have also been studied.  相似文献   

14.
The {SBA/PSS}n/PDDA films modified electrode was prepared by layer-by-layer (LBL) assembly with mesoporous SiO2 (SBA), poly(sodium 4-styrene-sulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDDA) in this paper. SBA is a large pore-size mesoporous material with highly ordered hexagonally arranged mesochannels and high thermal stability etc. The electrochemical characteristics of the {SBA/PSS}n/PDDA films have been studied by electrochemical impedance spectroscopy in 0.1 M KCl solution containing 5.0 mM Fe(CN)63−/Fe(CN)64− at the formal potential of 0.230 V. The ultratrace nitroaromatic compounds (NACs) such as TNT, TNB, DNT and DNB were determined by differential pulse voltammetry (DPV) measurement. The sensitivities for NACs determination with {SBA/PSS}n/PDDA modified electrode were dependent on the number of layers, pH and ionic strength of electrolyte, based on which a set of optimized conditions for film fabrication was inferred. The current responses were linear with NACs ranging from 10−9 to 10−7 mol/l. The results showed that the {SBA/PSS}n/PDDA modified electrode established a new way for fast, simple and sensitive analysis of NACs.  相似文献   

15.
A novel potentiometric membrane Eu (III) ion sensor is described based on a new S–N hexadentates Schiff's base, bis(thiophenol)butane2,3-dihydrazone (SNSB). The sensor exhibited a Nernstian response over a concentration range of 1.0 × 10−5 to 1.0 × 10−2 M, with a detection limit of 5.0 × 10−6 M. The best performance was achieved with a membrane composition of 30% PVC, 63% o-nitrophenyloctyl ether (NPOE), 5% SNSB, and 5% (0.010 mmol) potassium tetrakis(p-chlorophenyl) borate (KTpClPB). It was found that in the pH range of 3.0–8.5, the potential response of the sensor was not affected by the pH. Furthermore, the electrode presented satisfactory reproducibility, very fast response time (<5 s), and relatively good discriminating ability for Eu(III) ions with respect to many common cations and lanthanide ions, including sodium, potassium, magnesium, calcium, copper, nickel, cobalt, zinc, lead, lanthanum, cerium, gadolinium, samarium, ytterbium, presidium, terbium, neodymium, holmium, erbium, thulium, lutetium, dysprosium, iron and chromium metal ions. The sensor was applied to the determination of fluoride ions in two mouth wash preparations and binary mixtures.  相似文献   

16.
A highly Ce(III) ion-selective poly vinyl chloride (PVC) membrane sensor based on N′-[(2-hydroxyphenyl)methylidene]-2-furohydrazide (NHMF) as an excellent sensing material is successfully developed. The electrode shows a good selectivity for Ce(III) ions with respect to most common cations including alkali, alkaline earth, transition and heavy metal ions. The proposed sensor exhibits a wide linear response with a slope of 19.4 ± 0.3 mV/decade over the concentration range of 1.0 × 10−5 to 1.0 × 10−1 M, and a detection limit of 7.6 × 10−6 M of Ce(III) ions. The sensor response is independent of pH in the range of 3.5–10.0. The proposed electrode was applied as an indicator electrode in potentiometric titration of Ce(III) ions with EDTA and C2O42. It was also successfully applied in the determination of cerium ions in aqueous samples.  相似文献   

17.
A fluorescent reagent, 2-hydroxy-1-naphthaldehydene-8-aminoquinoline (HNAAQ) was synthesized, and an organically modified sol–gel membrane for detection of lead ion by using HNAAQ as fluorescence probe was fabricated. Under the optimum conditions, by a coplanar effect and the degree of molecular conjugation due to the complexation of Pb2+ with HNAAQ the relative fluorescence intensity I100/I0 of the sensing membrane is linearly increased over the Pb2+ concentration range of 1.9 × 10−7 to 1.9 × 10−4 mol/L with the detection limit of 8.3 × 10−8 mol/L. The preparation of this organically modified sol–gel membrane and its characteristics were investigated in detail.  相似文献   

18.
A electrogenerated chemiluminescence (ECL) sensor for itopride was developed based on tris(2,2-bipyridyl)ruthenium(II) (Ru(bpy)32+)-doped silica (RuDS) nanoparticles/biopolymer chitosan composites membrane modified glassy carbon electrode (GCE). The RuDS nanoparticles (52 ± 5 nm) were prepared by a modified Stőber synthesis method and were characterized by electrochemical, fluorometric and transmission electron microscopy technology. The Ru(bpy)32+ encapsulation interior of the silica nanoparticle maintains its electrochemical activities and also reduces Ru(bpy)32+ leaching from the silica matrix when immersed in water due to the electrostatic interaction. The ECL analytical performances of this ECL sensor for itopride based on its enhancement ECL emission of Ru(bpy)32+ were investigated in details. Under the optimum condition, the enhanced ECL intensity was linear with the itopride concentration in the range of 1 × 10−8 to 2 × 10−5 g/mL (R = 0.9978). The detection limit was 3 × 10−9 g/mL, and the relative standard deviation was 2.3% for 8 × 10−8 g/mL itopride (n = 11). The method was successfully applied to the determination of itopride in pharmaceutical and human serum samples with satisfactory results. The as-prepared ECL sensor for the determination of itopride displayed good sensitivity and stability.  相似文献   

19.
An Ag/AgCl solid-state reference electrode is developed by means of a graphite–AgCl–Silver dag-epoxy resin composite. The response of the composite reference electrode (CRE) to chloride ions is evaluated; a linear non-nernstian response is observed associated to the following equation E = −15.15 (±1.10) − 44.05 (±0.38) log[Cl]. Comparing the CRE's response potential versus a saturated commercial Ag/AgCl reference in KCl 0.1 M, a mean of 40.7 ± 0.4 mV of the distribution of potential versus time data is observed over a period of 1 h. The performance of the CRE as reference for a glass membrane electrode by means of direct pH measurements and quantitative determination of acids by acid–base titrations is evaluated obtaining statistically stable, precise and exact results compared with those obtained using a combined glass electrode. The typical cylindrical configuration of the CRE is changed to adapt it to a FIA system for the determination of ammonium ion, obtaining a sensitivity 50.30 ± 0.26 mV/log[NH4+] and a linear range 8.5 × 10−5 to 0.1 M, which are analytical parameters statistically equivalent to those presented by the classical determination system.  相似文献   

20.
We report here the use of albumin-based biosensor chips for the determination of metal content and characterization of metal–protein interaction by surface plasmon resonance. Bovine serum albumin was immobilized onto a carboxymethylated dextran matrix and used for metal detection. The temperature for the analysis was defined and the highest interaction was observed at 25 °C. The albumin sensor chip binds cadmium, zinc or nickel in a concentration-dependent manner, but not magnesium, manganese and calcium. The optimal buffer condition used for the analysis contains 0.01 M HEPES, pH 7.4, 1 mM NaCl and 0.005% Tween-20. Using this condition, a linear calibration curve within the range of 10−8 to 10−4 M can be established for the metals. However, a dramatic increase in binding capacity was observed when metal concentration was higher than 10−4 M and reached a plateau at 10−2 M. The detection limit for Cd can reach as low as 1 ppb. When measuring a solution containing two species of metal ions with the albumin chip, an additive effect was observed for Ni and Zn. However, 20–30% reduction in resonance response was found upon mixing Cd with Zn or Ni. These observations are consistent with the binding characteristics of albumin. The feasibility of measuring serum metal content by the albumin chip was examined. A linear calibration curve can be established if the samples are boiled and passed through a gel filtration column. The binding affinity of metal with albumin can also be achieved by using the sensor chip. The binding affinity follows the order of Ni > Zn > Cd. These results indicate that the albumin-based sensor chip is useful not only in the quantification of metal content, but also in the characterization of the biochemical properties of albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号