首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
Different types of heating, ventilation, and air-conditioning (HVAC) systems consume different amounts of energy yet they deliver similar levels of acceptable indoor air quality (IAQ) and thermal comfort. It is desirable to provide buildings with an optimal HVAC system to create the best IAQ and thermal comfort with minimum energy consumption. In this paper, a combined system of chilled ceiling, displacement ventilation and desiccant dehumidification is designed and applied for space conditioning in a hot and humid climate. IAQ, thermal comfort, and energy saving potential of the combined system are estimated using a mathematical model of the system described in this paper. To confirm the feasibility of the combined system in a hot and humid climate, like China, and to evaluate the system performance, the mathematical model simulates an office building in Beijing and estimates IAQ, thermal comfort and energy consumption. We conclude that in comparison with a conventional all-air system the combined system saves 8.2% of total primary energy consumption in addition to achieving better IAQ and thermal comfort. Chilled ceiling, displacement ventilation and desiccant dehumidification respond consistently to cooling source demand and complement each other on indoor comfort and air quality. It is feasible to combine the three technologies for space conditioning of office building in a hot and humid climate.  相似文献   

2.
In conventional mixing ventilation air conditioning system, fresh air which has been polluted by recirculated air is supplied to occupied zone. Therefore, more fresh air which results in energy penalty needs to be supplied in order to keep good indoor air quality (IAQ) and thermal comfort. Some alternatives such as personalized ventilation air conditioning system can address this problem effectively by supplying fresh air directly into occupied zone. However, room layouts and visual effects will be influenced deeply because of extended air ducts. A new approach supplying fresh air directly by utilizing high velocity circular air jet without mixing with recirculated air is introduced. Objective measurements and computational fluid dynamics (CFD) tool are used to evaluate corresponding indoor parameters to verify that it can both supply fresh air into occupied zone effectively and avoid draught rating.  相似文献   

3.
In this work, the combined effect of the energy conservative variable refrigerant volume (VRV) system and the variable air volume (VAV) system was experimentally investigated using genetic fuzzy optimization method that yielded better thermal comfort, indoor air quality (IAQ) requirements without compromising on the energy savings potential. The proposed system was tested using the demand controlled ventilation (DCV) combined with the economizer cycle ventilation (ECV) techniques and examined for a year-round building air conditioning (A/C) application. The supply air temperature (SAT) set points were varied under three distinct strategies and the optimal solutions obtained for the fuzzy systems designed resulted in an enhanced energy conservative potential. The test results of the proposed system were compared with the conventional fan coil A/C system. Based on the three strategies of the supply air temperature, the proposed system yielded an improved per day energy savings potential of 54% in summer and 61% in winter design conditions. Furthermore, for the strategies considered the proposed system achieved an annual energy conservative potential of 36% and exhibited more possible ways to achieve thermal comfort, IAQ and energy conservation.  相似文献   

4.
Studies of thermal comfort of occupants started in the early part of the 20th century to describe the comfort level in terms of environmental variables. Field studies have indicated that many of the complaints about unsatisfactory indoor environment can be attributed to the thermal environment. Hence, heating, ventilation, and air conditioning (HVAC) systems are used in buildings to create thermal environments that are capable of providing comfort to the occupants. Among different ventilation systems, displacement ventilation (DV) systems have become popular as more energy efficient room air distribution systems compared with the other more common forms of air distribution systems, such as mixing ventilation. However, local cold discomfort at the lower extremities due to vertical temperature gradient is often reported with DV systems. Although many studies are reported in the literature that compare the performance of the DV systems with the other more conventional types of ventilation systems, the performance of different displacement ventilation types in providing thermal comfort need further investigation. The aim of the current work is to compare the ventilation performance, as predicted by an advanced thermal comfort model, of three commonly used DV air terminal devices (ATDs) for room ventilation: a flat wall diffuser (ATD1), semi-cylindrical wall diffuser (ATD2) and floor swirl diffusers (ATD3). The CBE (Center for the Built Environment at Berkeley) comfort model has been implemented in this study to compare the thermal comfort provided by the three ATDs due to its good performance in non-uniform thermal environments. Based on the test conditions and the results obtained from the comfort model, the predicted occupant’s local sensations for the case of ATD2 were better than those for ATD1 and ATD3 and it showed better overall thermal sensation. Since the local comfort of the CBE model is a function of both local and overall thermal sensations, the predicted occupant’s local comfort values for ATD2 were better than those for ATD1 and ATD3 and consequently it provided better overall thermal comfort.  相似文献   

5.
基于置换通风舒适、健康和节能的显著特点,本文回顾了置换通风的发展历程,从室内空气品质和节能等方面阐述了国内外置换通风的研究现状。气流组织、热舒适性和污染物分布是影响置换通风室内空气品质的主要因素,因而论文主要从置换通风的两个显著特性:热力分层和垂直温度梯度的角度讨论了室内热舒适性影响因素和研究现状,从颗粒和气体污染物的分布情况论述污染物对室内空气品质的影响,根据置换通风的气流特性,提出可以把室内污染物分为热源和冷源污染物进行研究;最后简要介绍了置换通风节能的情况和优势。  相似文献   

6.
下送上回通风方式目前得到了广泛的研究应用,其供冷运行时就是置换通风,但同样一套通风系统在一些地区的寒冷季节则有可能需要作供暖运行.为了获得下送上回通风系统在分别作供冷与供暖运行时的具体性能参数,本文应用实验测试与计算流体力学(CFD)模拟的方法研究了置于环境实验室内的某办公环境.研究中分析比较了该办公环境内的空气速度、温度以及追踪气体污染物的浓度分布.研究结果表明,下送上回通风方式作供冷运行时空气温度及污染物浓度分层现象明显,空气处于半混合状态,置换效果较好;作供暖运行时,温度及污染物浓度趋于均匀,通风系统性能接近于混合送风系统,不具备良好的抑制交叉污染的能力.  相似文献   

7.
《Energy and Buildings》2005,37(2):157-166
Many educational buildings in industrialised countries have poor indoor climate, according to today’s knowledge about the impact of indoor climate on well-being and productivity. Budget restrictions and practical limitations such as lack of space for central air handling units and ventilation ducts, have motivated the application of simplified ventilation systems in some schools, such as taking unconditioned supply air directly from the facade. One such school was recently evaluated in Norway.On cold days, thermal comfort in the classroom deteriorated due to cold downdraught from the supply outlet. In addition, moist and fertile conditions for microbiological growth were observed in the air supply ductwork. On the other hand the same pupils are more satisfied with the school and have less sick building syndrome (SBS) symptoms during winter than summer. An improved control strategy with a temperature-compensated CO2 set-point for controlling the airflow is suggested. This could improve thermal comfort and reduce energy use without compromising perceived air quality (PAQ) during cold weather. Furthermore it could improve indoor air quality (IAQ) during warm weather with only a slight increase of energy use. Further evaluation of an improved solution is needed before such a ventilation concept can be recommended in cold climates.  相似文献   

8.
对热舒适、空气感觉质量及能耗的模拟研究   总被引:5,自引:3,他引:5  
室内空调设计温度和新风量对热舒适,室内空气质量及能耗量有重要影响,然而对它们之间相互关系进行研究的文献却较少。通过计算机模拟空调系统在7种室内设计温度和7种新风量条件下的运行情况,得到不同的设计条件组合对热舒适、人体感觉空气质量及建筑能耗量的影响。基于这项分析,提出了此办公建筑合理的室内设计温度和新风量取值。  相似文献   

9.
大空间建筑室内气流组织数值模拟与舒适性分析   总被引:5,自引:1,他引:5  
分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的大空间建筑空调室内气流的速度场和温度场进行了数值模拟,并对其结果进行了实验验证。根据ADPI指标对这几种送回风方式进行了热舒适性评价.结果表明,分层空调和置换通风是大空间建筑中较好的气流组织方式。  相似文献   

10.
分析了气流分布性能的评价指标、热舒适性评价指标和室内空气品质的评价指标。将通风方式分为置换通风和混合通风,利用暖通空调专用模拟软件Airpak对室内气流进行模拟。模拟某小型会议室的温度、速度、CO2浓度、平均空气龄、PMV值和PPD值,并依据模拟结果分析不同气流组织下的室内空气品质、人体热舒适性和空调能耗情况。指出不同气流组织对室内空气品质、人体热舒适性和空调能耗的影响不同,置换通风和上侧送上回送风方式能得到较好的空气品质和有效的能量利用。  相似文献   

11.
某报告厅空调系统的设计及其能耗分析   总被引:5,自引:0,他引:5  
介绍了西安某办公楼报告厅空调系统的设计。分别应用置换通风与混合通风两种通风方式,在室外和室内设计参数相同的情况下,充分比较了它们在送风量、新风量、能耗以及室内空气品质的不同。结果表明在某些应用场合,置换通风在空气品质提高和能耗降低上有明显的优势,同时这种优势不以牺牲热舒适性为代价,因此建议使用置换通风系统。  相似文献   

12.
本文介绍和综述国外有关置换通风的研究进展,影响置换通风热舒适性和室内空气品质的因素,以及人员活动和热源分布等对置换通风气流组织的影响。  相似文献   

13.
地板辐射与置换通风空调系统运行参数   总被引:1,自引:0,他引:1  
建立了基于EnergyPlus的地板辐射供冷加置换通风空调系统模型,模拟得到的室内温度和辐射地板所承担冷量与实验结果的误差小于±7%。在此模型基础上,改变送风参数和供水参数,得到置换通风供冷量、辐射地板供冷量、地板表面温度、室内空气平均温度、AUST温度等参数的变化规律。结合热舒适性模型,得到满足室内热舒适性(-0.5≤PMV≤0.5)条件下,置换通风的送风参数和辐射地板的供水参数范围,为复合系统设计和应用提供依据。  相似文献   

14.
Conventional heating, ventilation, and air conditioning (HVAC) systems are incapable of providing control over individual environments or adjusting fresh air supply based on the dynamic occupancy of individual rooms in an office building. This paper introduces the concept of distributed environmental control systems (DECS) and shows that improvement in indoor air quality (IAQ) and energy efficiency can be achieved by providing required amounts of fresh air directly to the individual office spaces through distributed demand controlled ventilation (DDCV). In DDCV, fresh air is provided to each micro-environment (room or cubicle) based on input from distributed sensors (CO2, VOC, occupancy, etc.) or intelligent scheduling techniques to provide acceptable IAQ for each occupant, rather than for groups or populations of occupants. In order to study DECS, a numerical model was developed that incorporates some of the best available models for studying building energy consumption, indoor air flow, contaminant transport and HVAC system performance. The developed model was applied to a DECS in a model office building equipped with a DDCV system. By implementing DECS/DDCV and intelligent scheduling techniques it is possible to achieve an improvement in IAQ along with a reduction in annual energy consumption compared to conventional ventilation systems.  相似文献   

15.
Influence of air supply parameters on indoor air diffusion   总被引:6,自引:0,他引:6  
This paper presents the field distributions of air velocity, temperature, contaminant concentration, and thermal comfort in an office with displacement ventilation for different air supply parameters such as the effective area, shape, and dimension of the diffuser and the turbulence intensity, flow rate, and temperature of the air supplied. The research is conducted numerically by using an airflow computer program based on a low-Reynolds-number k-ε model of turbulence. It can be concluded that the effective area, shape, and dimension of the diffuser and the turbulence intensity of the air supplied have little effect on the room air diffusion except at floor level. The influence of the flow rate and temperature of the air supplied is very significant on the air diffusion as well as on the thermal comfort and indoor air quality.  相似文献   

16.
论述了室内环境热舒适性的重要性,以及空调气流组织对室内环境热舒适性和建筑节能的影响。空调室内气流组织不合理不仅会导致人员热舒适性降低,而且还会影响工作效率和身心健康,同时,还会导致设备初投资和运行费用的增加。室内空调气流组织优化不仅要考虑室内人员环境的热舒适性,同时,要考虑降低空调运行能耗以实现建筑节能。  相似文献   

17.
A liquid desiccant based dedicated outdoor air-chilled ceiling (DOAS-CC) system is proposed to serve a multi-zone space. The outdoor airflow rate and the supply air humidity ratio are two crucial variables in such a system, which significantly influence indoor thermal comfort, indoor air quality and energy consumption. Two strategies are presented to optimize these two variables in the study. They are the demand-controlled ventilation (DCV) strategy and the supply air humidity ratio set-point reset strategy. To evaluate the performances of these two strategies, a basic control strategy, i.e., the strategy adopting constant ventilation flow rate and constant supply air humidity ratio, is selected as the benchmark. Performances of the two strategies in terms of indoor air temperature, relative humidity and CO2 concentration as well as energy consumption are analyzed using simulation tests. The results show that the supply air humidity ratio set-point reset strategy is effective for the indoor air humidity control. It can save about 19.4% of total energy consumption during the whole year. The DCV-based ventilation strategy can further reduce about 10.0% of energy consumption.  相似文献   

18.
Built environment consumes the bulk of the UK’s fossil fuel. Schools account for 15% of the public sector’s carbon emissions. Energy efficient building design can play a vital role in achieving the national carbon emission reduction target of 80% by 2050. Natural and mixed mode ventilation is at the forefront of suggested energy efficient strategies for reducing carbon emissions from schools while maintaining good indoor air quality and thermal comfort. However, it is challenging to naturally ventilate many urban school buildings through side openings because of high noise and particulate air pollution. An alternative strategy, such as multi floor operation of windcatchers was assessed in this research as a sole source of fresh air in teaching spaces. Dynamic thermal simulation (DTS) and computational fluid dynamics (CFD) simulations assessed the performance of the adopted natural ventilation (NV) strategy in meeting the approved requirements for fresh air, indoor air quality (IAQ) and summertime overheating. Simulation results show that it is challenging to meet approved guidelines on air quality and thermal comfort, only when windcatchers are employed for ventilation purpose. However, fan assisted ventilation in conjunction with windcatchers provided satisfactory results. Detailed performance assessments using CFD seem desirable to validate DTS based findings.  相似文献   

19.
It is necessary to adopt appropriate control strategies to save energy and improve the indoor air quality (IAQ). On the validated TRNSYS simulation platform, four different control strategies are investigated to examine the indoor air temperature, energy consumption, CO2 concentration and predicted mean vote (PMV) for the variable air volume (VAV) systems in an office building in Shanghai. As an original scheme, Strategy A using constant outdoor air intake fraction shows high energy consumption, low CO2 concentration and acceptable thermal comfort. By using minimum outdoor air ventilation based on dynamic occupancy detection, Strategy B can provide more than 15% energy saving, acceptable PMV value but high CO2 concentration in breathing zone. By using indoor air temperature reset, Strategy C presents the most energy savings beyond 20% reduction, low CO2 concentration but poor thermal comfort. In mild seasons, combining enthalpy-based outdoor airflow economizer cycle with supply air temperature reset, Strategy D can achieve 9.4% energy savings and the lowest CO2 concentration. Taken together, each strategy covers some strengths as well as some weaknesses. How to comprehensively assess a control strategy for all specific objectives should be considered in future studies.  相似文献   

20.
《Energy and Buildings》1995,23(2):73-81
Local thermal discomfort in offices with displacement ventilation is investigated using computational fluid dynamics. The standard κ-ϵ turbulence model is used for the prediction of indoor air flow patterns, temperature and moisture distributions, taking account of heat transfer by conduction, convection and radiation. The thermal comfort level and draught risk are predicted by incorporating Fanger's comfort equations in the airflow model. It has been found that for sedentary occupants with summer clothing common complaints of discomfort in offices ventilated with displacement systems result more often from an unsatisfactory thermal sensation level than from draught alone. It is shown that thermal discomfort in the displacement-ventilated offices can be avoided by optimizing the supply air velocity and temperature. It is also shown that optimal supply air conditions of a displacement system depend on the distance between the occupant and air diffuser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号