首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
利用彩色数据进行体绘制,可以创建真实感图像,并具有揭示体内真实细节的能力。虽然彩色数据是可用的,但它并不包含依赖于视点的光线反射信息和光线在体素中的传播属性。本文提出了基于VHP彩色数据的体绘制算法框架,着重讨论了如何利用Phone光照模型进行着色,以及在HSI色彩空间中计算阻光度值。实验结果表明,本文算法成像质量高,可以表现人体的细微结构和纹理信息。  相似文献   

2.
Traditional approaches for rendering segmented volumetric data sets usually deliver unsatisfactory results, such as insufficient frame rate, low image quality, and intermixing artifacts. In this paper, we introduce a novel “color encoding” technique, based on graphics processing unit (GPU) accelerated raycasting and post-color attenuated classification, to address this problem. The result is an algorithm that can generate artifact-free dynamic volumetric images in real time. Next, we present a pre-integrated volume shading algorithm to reduce graphics memory requirements and computational cost when compared to traditional shading methods. We also present a normal-adjustment technique to improve image quality at clipped planes. Furthermore, we propose a new algorithm for color and depth texture indexing that permits virtual solid objects, such as surgical tools, to be manipulated within the dynamically rendered volumetric cardiac images in real time. Finally, all these techniques are combined within an environment that permits real-time visualization, enhancement, and manipulation of dynamic cardiac data sets.  相似文献   

3.
In this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any pre‐computation, thus allowing interactive explorations of volumetric data sets via on‐the‐fly editing of the shading model parameters or (multi‐dimensional) transfer functions.  相似文献   

4.
Existing real‐time volume rendering techniques which support global illumination are limited in modeling distinct realistic appearances for classified volume data, which is a desired capability in many fields of study for illustration and education. Directly extending the emission‐absorption volume integral with heterogeneous material shading becomes unaffordable for real‐time applications because the high‐frequency view‐dependent global lighting needs to be evaluated per sample along the volume integral. In this paper, we present a decoupled shading algorithm for multi‐material volume rendering that separates global incident lighting evaluation from per‐sample material shading under multiple light sources. We show how the incident lighting calculation can be optimized through a sparse volume integration method. The quality, performance and usefulness of our new multi‐material volume rendering method is demonstrated through several examples.  相似文献   

5.
A model for volume lighting and modeling   总被引:4,自引:0,他引:4  
Direct volume rendering is a commonly used technique in visualization applications. Many of these applications require sophisticated shading models to capture subtle lighting effects and characteristics of volumetric data and materials. For many volumes, homogeneous regions pose problems for typical gradient-based surface shading. Many common objects and natural phenomena exhibit visual quality that cannot be captured using simple lighting models or cannot be solved at interactive rates using more sophisticated methods. We present a simple yet effective interactive shading model which captures volumetric light attenuation effects that incorporates volumetric shadows, an approximation to phase functions, an approximation to forward scattering, and chromatic attenuation that provides the subtle appearance of translucency. We also present a technique for volume displacement or perturbation that allows realistic interactive modeling of high frequency detail for both real and synthetic volumetric data.  相似文献   

6.
提出了一种基于寄存器合成器和多纹理(Multi—Texture)的体绘制方法,它能够进行三线性插值采样,并且能够使用近似归一化的插值梯度进行明暗处理。  相似文献   

7.
为克服传统算法中体绘制交互速度不流畅、重建耗时长、绘制效果单一的不足,实现了基于图形处理器(GPU)的光线投射算法用于医学层析图像实时体绘制,并能快速切换不同组织器官的绘制效果。首先,读入医学层析图像到计算机内存,构造体素;然后,设置相应体素属性(如插值方式、着色处理、光照参数)等,设计显示不同组织器官的颜色及不透明度传输函数;最后,GPU加载体素据并进行光线投射算法的计算。实验结果表明,在绘制速度上,GPU加速光线投射算法实现的多功能体绘制技术的绘制速度能达到每秒40帧以上,完全满足临床应用需求。在绘制质量上,用户交互中由于重采样而产生的锯齿现象明显低于CPU端实现的光线投射算法,GPU端与CPU端绘制时间的加速比在9倍左右。  相似文献   

8.
用图象空间为序的体绘制技术显示三维数据场   总被引:17,自引:1,他引:17  
唐泽圣  袁骏 《计算机学报》1994,17(11):801-808
本文首先简要介绍了应用体绘制技术显示三维空间数据场的基本原理,接着,提出并实现了经过改进的图象空间为序的体绘制算法,该算法以重构三维空间数据场代替了原有的重构光亮度场的方法,从而提高了图象质量并节约了存储空间。最后,介绍了用图象空间为序的体会 制显示多等值面的算法及其华,讨论了提高该算法效途径。  相似文献   

9.
In this paper, we present a discrete shading technique using medial axis transform (MAT) of 3D binary image data based on digital generalized octagonal distances. Our method is computationally attractive as it does not require the explicit computation of surface normals. We have compared our results with images rendered from voxel and octree representations while using analytical surface rendered images as bench marks. The quality of rendering by our method is certainly superior to those obtained from voxel and octree representations.  相似文献   

10.
As an alternative method to optical endoscopy, visual quality and interactivity are crucial for virtual endoscopy. One solution is to use the 3D texture map based volume rendering method that offers high rendering speed without reducing visual quality. However, it is difficult to apply the method to virtual endoscopy. First, 3D texture mapping requires a high-end graphic workstation. Second, texture memory limits reduce the frame-rate. Third, lack of shading reduces visual quality significantly. As 3D texture mapping has become available on personal computers recently, we developed an interactive navigation system using 3D texture mapping on a personal computer. We divided the volume data into small cubes and tested whether the cubes had meaningful data. Only the cubes that passed the test were loaded into the texture memory and rendered. With the amount of data to be rendered minimized, rendering speed increased remarkably. We also improved visual quality by implementing full Phong shading based on the iso-surface shading method without sacrificing interactivity. With the developed navigation system, 256 x 256 x 256 sized brain MRA data was interactively explored with good image quality.  相似文献   

11.
In this paper, we present a novel technique which simulates directional light scattering for more realistic interactive visualization of volume data. Our method extends the recent directional occlusion shading model by enabling light source positioning with practically no performance penalty. Light transport is approximated using a tilted cone‐shaped function which leaves elliptic footprints in the opacity buffer during slice‐based volume rendering. We perform an incremental blurring operation on the opacity buffer for each slice in front‐to‐back order. This buffer is then used to define the degree of occlusion for the subsequent slice. Our method is capable of generating high‐quality soft shadowing effects, allows interactive modification of all illumination and rendering parameters, and requires no pre‐computation.  相似文献   

12.
The pre-integrated volume rendering technique is widely used for creating high quality images. It produces good images even though the transfer function is nonlinear. Because the size of the pre-integration lookup table is proportional to the square of data precision, the required storage and computation load steeply increase for rendering of high-precision volume data. In this paper, we propose a method that approximates the pre-integration function proportional to the data precision. Using the arithmetic mean instead of the geometric mean and storing opacity instead of extinction density, this technique reduces the size and the update time of the pre-integration lookup table so that it classifies high-precision volume data interactively. We demonstrate performance gains for typical renderings of volume datasets.  相似文献   

13.
14.
Fast display of illuminated field lines   总被引:2,自引:0,他引:2  
A new technique for interactive vector field visualization using large numbers of properly illuminated field lines is presented. Taking into account ambient, diffuse and specular reflection terms, as well as transparency and depth cueing, we employ a realistic shading model which significantly increases the quality and realism of the resulting images. While many graphics workstations offer hardware support for illuminating surface primitives, usually no means for an accurate shading of line primitives are provided. However, we show that proper illumination of lines can be implemented by exploiting the texture mapping capabilities of modern graphics hardware. In this way, high rendering performance with interactive frame rates can be achieved. We apply the technique to render large numbers of integral curves of a vector field. The impression of the resulting images can be further improved by a number of visual enhancements, like color coding or particle animation. We also describe methods for controlling the distribution of field lines in space. These methods enable us to use illuminated field lines for interactive exploration of vector fields  相似文献   

15.
In this paper, a technique is proposed for the rendering of transparent objects interactively using the method of refractive rendering. In the proposed technique, the refractive rendering algorithm is performed in two stages, namely the pre‐computation stage and the shading stage. In the pre‐computation stage, ray‐traced information, including directions and positions of rays, are generated by a ray tracing process and are stored in a set of ray lists. In the shading stage, these data are retrieved from the ray lists for computing the shading of an object. Using the proposed technique, photorealistic image of transparent objects and gemstones with various cuttings, material properties, lighting and background can be rendered interactively. By combining the refractive rendering technique with conventional shading techniques, jewelry and crystal designs can be rendered at a much higher speed comparing with conventional ray tracing techniques.  相似文献   

16.
Direct volume rendering (DVR) is a powerful visualization technique which allows users to effectively explore and study volumetric datasets.Different transparency settings can be flexibly assigned to different structures such that some valuable information can be revealed in direct volume rendered images (DVRIs).However,end-users often feel that some risks are always associated with DVR because they do not know whether any important information is missing from the transparent regions of DVRIs.In this paper,we investigate how to semi-automatically generate a set of DVRIs and also an animation which can reveal information missed in the original DVRIs and meanwhile satisfy some image quality criteria such as coherence.A complete framework is developed to tackle various problems related to the generation and quality evaluation of visibility-aware DVRIs and animations.Our technique can reduce the risk of using direct volume rendering and thus boost the confidence of users in volume rendering systems.  相似文献   

17.
Visualization of vector fields using seed LIC and volume rendering   总被引:3,自引:0,他引:3  
Line integral convolution (LIC) is a powerful texture-based technique for visualizing vector fields. Due to the high computational expense of generating 3D textures and the difficulties of effectively displaying the result, LIC has most commonly been used to depict vector fields in 2D or over a surface in 3D. We propose new methods for more effective volume visualization of three-dimensional vector fields using LIC: 1) we present a fast method for computing volume LIC textures that exploits the sparsity of the input texture. 2) We propose the use of a shading technique, called limb darkening, to reveal the depth relations among the field lines. The shading effect is obtained simply by using appropriate transfer functions and, therefore, avoids using expensive shading techniques. 3) We demonstrate how two-field visualization techniques can be used to enhance the visual information describing a vector field. The volume LIC textures are rendered using texture-based rendering techniques, which allows interactive exploration of a vector field.  相似文献   

18.
Illustrative context-preserving exploration of volume data   总被引:2,自引:0,他引:2  
In volume rendering, it is very difficult to simultaneously visualize interior and exterior structures while preserving clear shape cues. Highly transparent transfer functions produce cluttered images with many overlapping structures, while clipping techniques completely remove possibly important context information. In this paper, we present a new model for volume rendering, inspired by techniques from illustration. It provides a means of interactively inspecting the interior of a volumetric data set in a feature-driven way which retains context information. The context-preserving volume rendering model uses a function of shading intensity, gradient magnitude, distance to the eye point, and previously accumulated opacity to selectively reduce the opacity in less important data regions. It is controlled by two user-specified parameters. This new method represents an alternative to conventional clipping techniques, sharing their easy and intuitive user control, but does not suffer from the drawback of missing context information  相似文献   

19.
We describe a new progressive technique that allows real-time rendering of extremely large tetrahedral meshes. Our approach uses a client-server architecture to incrementally stream portions of the mesh from a server to a client which refines the quality of the approximate rendering until it converges to a full quality rendering. The results of previous steps are re-used in each subsequent refinement, thus leading to an efficient rendering. Our novel approach keeps very little geometry on the client and works by refining a set of rendered images at each step. Our interactive representation of the dataset is efficient, light-weight, and high quality. We present a framework for the exploration of large datasets stored on a remote server with a thin client that is capable of rendering and managing full quality volume visualizations.  相似文献   

20.
Volumetric rendering is widely used to examine 3D scalar fields from CT/MRI scanners and numerical simulation datasets. One key aspect of volumetric rendering is the ability to provide perceptual cues to aid in understanding structure contained in the data. While shading models that reproduce natural lighting conditions have been shown to better convey depth information and spatial relationships, they traditionally require considerable (pre)computation. In this paper, a shading model for interactive direct volume rendering is proposed that provides perceptual cues similar to those of ambient occlusion, for both solid and transparent surface-like features. An image space occlusion factor is derived from the radiative transport equation based on a specialized phase function. The method does not rely on any precomputation and thus allows for interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions while modifications to the volume via clipping planes are incorporated into the resulting occlusion-based shading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号