首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
系统研究了Ti-6Al-3Nb-2Zr-1Mo-x Ta(x=0,0.2,0.5,1.0,3.0,5.0)合金的微观组织、拉伸性能、夏比冲击韧性和耐海水腐蚀性。结果表明,经α+β两相区锻造后,Ti-6Al-3Nb-2Zr-1Mo-5Ta合金获得片层组织,Ti-6Al-3Nb-2Zr-1Mo-x Ta(x=0,0.2,0.5,1.0,3.0)均获得双态组织。XRD、TEM和选区电子衍射表明,在添加Ta元素后,Ti-6Al-3Nb-2Zr-1Mo-x Ta合金没有新相产生。对于双态组织Ti-6Al-3Nb-Zr-1M0-x Ta合金,随着Ta含量的增加,其Mo当量逐渐增加,导致其屈服强度、抗拉强度和显微硬度均有所提高。而Ta含量对冲击吸收功的影响规律与屈服强度和抗拉强度的影响规律相反,其大小与冲击断口剪切唇区面积一致。当Ta含量超过1.0%(质量分数)时,由于α和β相之间的标准平衡电位差逐渐增大,Ti-6Al-3Nb-2Zr-1Mo-x Ta合金的耐海水腐蚀逐渐降低。综合考虑强度、冲击韧性和耐海水腐蚀性能,Ti-6Al-3Nb-2Zr-1Mo-1Ta合金综合匹配性最好,具有良好的海洋工程应用潜力。  相似文献   

2.
A pancake of Ti-43Al-9V-0.2Y (at.%) alloy with dimensions of ϕ480 mm × 46 mm was fabricated by pack-forging with a thick reduction of 80%. The as-forged Ti-43Al-9V-0.2Y alloy pancake has a duplex (DP) microstructure, which is composed of B2/α2/γ lamellar colonies and massive B2 and γ phase regions distributed along the boundaries between the lamellar colonies. Different microstructures were obtained by heat treatment of samples cut from the as-forged Ti-43Al-9V-0.2Y alloy pancake. A fully lamellar (FL) structure consisting of B2/α2/γ lamellar colonies was obtained after the heat treatment of 1350 °C/8 h. Tensile test results exhibited that the yield strength (YS) and ultimate tensile strength (UTS) of the alloy with DP microstructure were decreased from 680.7 MPa to 834.3 MPa at room temperature to 589.5 MPa and 693.1 MPa at 700 °C, respectively, and the elongation (δ) of the alloy with DP microstructure was increased from 1.99% at room temperature to 12.12% at 700 °C; the elongation (δ) of the alloy with FL microstructure was increased from 1.52% at room temperature to 85.84% at 800 °C.  相似文献   

3.
Correlation between tensile strength and hardness for damage-tolerant Ti-6Al-4V (TC4-DT) alloy and its electron beam welded joints was investigated. Yield strength (YS), ultimate tensile strength (UTS) and strain hardening coefficient of base metal and weld metal were obtained using uniaxial tensile tests. Microhardness of the base metal, heat affected zone, and weld metal was measured. Then, the linear correlations among the yield strength, tensile strength, and hardness were proposed. Moreover, correlation between strain hardening coefficient and the ratio of YS to UTS (YS/UTS) was established. The results indicate that microhardness can be used to predict the YS and UTS of the TC4-DT welded joint successfully. In addition, the strain hardening coefficient can be predicted by the YS/UTS. The prediction of strength and strain hardening coefficient is in agreement with the experiments. The correlations are applicable and valuable for the strength prediction of narrow welded fusion zone and heat affected zone based on the microhardness measurement.  相似文献   

4.
DZ951 directionally solidified nickel-base superalloy is mainly strengthened by y phase.Regularly aligned cuboidal and bimodal γ precipitates were attained by two heat treatments.The effect of microstructure on the mechanical properties of DZ951 alloy has been investigated.The results indicate that MC carbide changes to little blocks during aging treatment at 1050℃ (HT1).MC carbide partly degrades into M23c6 and there is a layer of γ around the carbide during aging treatment at 115℃ (HT2),which is beneficial to the elongation of DZ951 alloy.Small γ volume fraction and the uneven deformation structure are contributed to low mechanical propexties of the as-cast alloy.HT1 alloy has a better stress rupture life at 1100℃50 MPa and yield stress at 20℃,800℃ and 1100℃,which is attributed to regularly aligned cuboidal γ phase and even deformation structure.HT2 alloy has a good combination of strength and ductility.This arises fi'om the bimodal γ precitates and the degeneration of MC carbide.  相似文献   

5.
High-Nb containing (6–10 at.%) TiAl alloys exhibit excellent high-temperature strength and oxidation resistance. However, they are difficult to be fabricated into sheet in comparison with the conventional TiAl alloys. In the present work, the hot-deformation behavior of a high Nb–TiAl alloy (Ti–45Al-8.5Nb-0.2W-0.2B-0.03Y) was investigated. Hot-rolling process was optimized and carried out directly from the PAM (Plasma Arc Melting) ingot without the hot isostatic pressing (HIP) and hot forging. The hot-rolled sheets were successfully manufactured with dimensions up to 360 mm × 100 mm × 3.5 mm. The microstructure of as-rolled sheet is a typical “near gamma” characteristic with an average grain size about 15 μm. In the view of breakdown the lamellar colonies of high Nb–TiAl alloy ingot, the direct hot-rolling process has advantage over hot can forging and extrusion. Moreover, mechanical properties at room and high temperatures were also tested. Noteworthily, the as-rolled high Nb–TiAl alloy shows superplasticity above 950 °C at relatively high strain rate of 5 × 10−4.  相似文献   

6.
The effect of 0.2 wt.% of boron on the mechanical properties of Ti-1100, a near α titanium alloy, was evaluated at room temperature and at 600 °C in the as cast and thermomechanically processed (α-β rolled) condition after subjecting it to different heat treatments. Boron addition in Ti-1100 significantly refined the microstructure in the as cast condition but the mechanical properties did not show any improvement. However, in the thermomechanically processed (α-β rolled) and standard heat treatment condition, the yield strength (YS) and ultimate tensile strength (UTS) of the boron containing alloy increased significantly without any drop in elongation-to-failure as compared to the base alloy at both room temperature and 600 °C. No discernible trend was seen in YS and UTS in boron containing alloy with change in solution treatment temperature either at room temperature or at 600 °C.  相似文献   

7.
Precipitation strengthening of Cu-3Ti-1Cd alloy has been studied using hardness and tensile tests, electrical resistivity measurements, and transmission electron microscopy. The alloy exhibited a hardness of 117 Hv in solution-treated (ST) condition and attained a peak hardness of 288 Hv after aging at 450 °C for 72 h. Electrical conductivity increased from 7%IACS (International Annealed Copper Standard) in ST condition to 13%IACS on aging at 450 °C for 16 h. The alloy exhibited yield strength (YS) of 643 MPa and ultimate tensile strength (UTS) of 785 MPa in peak-aged (PA) condition. Strengthening in Cu-3Ti-1Cd alloy in PA condition is attributed to solid solution strengthening effect of cadmium (Cd) as well as fine scale precipitation of metastable and coherent β′-Cu4Ti phase. On overaging at 450 or 500 °C, the alloy showed a decrease in hardness as a result of formation of equilibrium precipitate β-Cu3Ti as continuous precipitation within the matrix and as discontinuous precipitation at the grain boundaries. While the tensile properties are better, the electrical conductivity of Cu-3Ti-1Cd alloy is less than that of binary Cu-2.7Ti alloy. The strengthening mechanism is the same in both binary and ternary alloys of Cu-Ti, i.e., precipitation of metastable and coherent β′-Cu4Ti phase.  相似文献   

8.
This work is aimed to conclude the effect of section thickness of a high pressure die cast (hpdc) Mg alloy on the tensile properties as ambiguous conclusions are presented in the literature. Tensile tests were performed on as-cast hpdc AZ91 alloy and the effect of section thickness on the tensile properties such as yield strength (YS), ultimate tensile strength (UTS), ductility and fracture strain (FS) are explained. Additionally, explanation on the microfailure mode of the material is presented to explain the influence of different microfeatures on the failure process. The average size, area fraction and clustering tendency of pores and Mg17Al12 (β) particles as well as average grain size are quantified and their effects on section thickness are obtained. The results confirm that the UTS, YS, ductility and FS are mainly influenced by the area fraction, size distribution and spatial arrangement of pores and phases.  相似文献   

9.
10.
Tensile tests were performed at different locations of high-pressure die cast (HPDC) Mg alloy and the effect of position on the tensile properties such as yield strength (YS), ultimate tensile strength (UTS), ductility and fracture strain (FS) are explained. Additionally, the significance of micro-failure mode of the material is presented. The average size, area fraction and clustering tendency of pores and Mg17Al12 (β) particles as well average grain size are correlated with the mechanical properties and found their influences.  相似文献   

11.
Zhu  Zhi-hao  Liu  Yu-han  Chen  Zhi-peng  Liu  Tian-yu  Zhang  Shuang  Dong  Dan-dan  Dong  Chuang 《中国铸造》2023,20(1):23-28

Ti-Al-V-Zr quaternary titanium alloys were designed following α-{[Al-Ti12](AlTi2)}17−n+β-{[Al-Ti12Zr2](V3)}n, where n=1–7 (the number of β units), on the basis of the dual-cluster formula of popular Ti-6Al-4V alloy. Such an alloying strategy aims at strengthening the alloy via Zr and V co-alloying in the β-Ti unit, based on the original β formula [Al-Ti14](V2Ti) of Ti-6Al-4V alloy. The microstructures of the as-cast alloys by copper-mold suction-casting change from pure α (n=1) to α+α′ martensite (n=7). When n is 6, Ti-5.6Al-6.8V-8.1Zr alloy reaches the highest ultimate tensile strength of 1,293 MPa and yield strength of 1,097 MPa, at the expense of a low elongation of 2%, mainly due to the presence of a large amount of acicular α′ martensite. Its specific strength far exceeds that of Ti-6Al-4V alloy by 35%.

  相似文献   

12.
Mg-9Al-1Zn (AZ91) magnesium matrix composites reinforced by Ti-6Al-4V (TC4) particles were successfully prepared via powder metallurgical method. The yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) showed a mountain-like tendency with the increase of the TC4 content. The mechanical properties of AZ91 magnesium matrix composites reached the optimal point with TC4 content of 10 wt.%, realizing YS, UTS, and EL of 335 MPa, 370 MPa, and 6.4%, respectively. The improvement of mechanical properties can be attributed to the effective load transfer from the magnesium matrix to the TC4 particles, dislocations associated with the difference in the coefficient of thermal expansion, good interfacial bonding between the Mg matrix and TC4 particles, and grain refinement strengthening.  相似文献   

13.
Electrochemical corrosion of Ti-35Nb-5Ta-7Zr alloy fabricated by arc melting and heat treatment process was studied in 0.9% NaCl at (37±1) °C. Phase and microstructure of the fabricated alloy were investigated using X-ray diffractometer and scanning electron microscope. Mechanical properties such as yield strength and elastic modulus of the alloy were determined by tensile test. Potentiodynamic polarization technique and impedance spectroscopy were employed to study the corrosion behavior. The results of the study were compared with those obtained for Ti-6Al-4V commercial alloy. The result of the study supports feasibility of Ti-35Nb-5Ta-7Zr alloy for implant applications.  相似文献   

14.
The use of β titanium alloys in the aerospace industry   总被引:2,自引:0,他引:2  
Beta titanium alloys have been available since the 1950s (Ti-13V-11Cr-3Mo or B120VCA), but significant applications of these alloys, beyond the SR-71 Blackbird, have been slow in coming. The next significant usage of a β alloy did not occur until the mid-1980s on the B-1B bomber. This aircraft used Ti-15V-3Cr-3Al-3Sn sheet due to its capability for strip rolling, improved formability, and higher strength than Ti-6Al-4V. The next major usage was on a commercial aircraft, the Boeing 777, which made extensive use of Ti-10V-2Fe-3Al high-strength forgings. Ti-15V-3Cr-3Al-3Sn environmental control system ducting, castings, and springs were also used, along with Ti-3Al-8V-6Cr-4Mo-4Zr (β-C) springs. Beta-21S was also introduced for high-temperature usage. More recent work at Boeing has focused on the development of Ti-5Al-5Mo-5V-3Cr, a high-strength alloy that can be used at higher strength than Ti-10V-2Fe-3Al and is much more robust; it has a much wider, or friendlier, processing window. This, along with additional studies at Boeing, and from within the aerospace industry in general will be discussed in detail, summarizing applications and the rationale for the selection of this alloy system for aerospace applications. This paper was presented at the Beta Titanium Alloys of the 00’s Symposium sponsored by the Titanium Committee of TMS, held during the 2005 TMS Annual Meeting & Exhibition, February 13–16, 2005 in San Francisco, CA.  相似文献   

15.
采用光学显微镜、透射电镜和拉伸试验等手段,研究了多道次两向轧制和单向轧制对不同原始状态(热轧态、水淬态和空冷态)Ti-6Al-4V合金显微组织和力学性能的影响。结果表明,热轧态Ti-6Al-4V合金的组织为片状α相+β相+少量等轴α相,水淬态Ti-6Al-4V合金形成了针状马氏体组织,空冷态Ti-6Al-4V合金形成了网状组织。Ti-6Al-4V合金适宜的两向轧制温度为700 ℃,此时合金中可见颗粒状β相弥散分布在α基体上。两向轧制Ti-6Al-4V合金的抗拉强度和屈服强度从高至低顺序为:水淬态>热轧态>空冷态,且轧向强度要高于横向;相较于单向轧制,两向轧制明显降低了Ti-6Al-4V合金板材拉伸性能的各向异性,且水淬态Ti-6Al-4V合金的轧向和横向强度差异最小,700 ℃轧制Ti-6Al-4V合金的主要细化机制为位错细化。  相似文献   

16.
添加硼对铸造Ti-46.5Al-8Nb合金组织和性能的影响   总被引:1,自引:0,他引:1  
全片层Ti-46.5Al-8Nb合金中添加硼(≤0.7%,原子分数)的显微组织观察表明,细化组织的临界硼含量约为0.5%(原子分数).细化机制与凝固前沿硼产生了附加的成分过冷和硼化物钉扎晶界双重机制有关.由于硼减小了片层形成所需要的过冷度,片层间距随硼含量的增加而增加,片层间距λ与晶粒尺寸d-1/2符合线性关系.添加硼的Ti-46.5Al-8Nb合金的α2相体积分数越高,硬度也越高.合金的断裂强度和延伸率随硼含量增加而增加.室温断裂强度与晶粒尺寸符合Hall-Petch关系.  相似文献   

17.
New Al4C3-containing Al-Ti-C master alloys (Al-0.6Ti-1C and Al-1Ti-1C) were developed by introducing Ti element into Al-C melt using melt reaction method, in which most of the TiC particles distribute around Al4C3 particles. It is believed that most of the C firstly reacts with Al melt and form Al4C3 particles by the reaction Al(l)+C(s)→Al4C3(s), and after adding Ti into the Al-C melt, the size of Al4C3 particles is decreased and the distribution of Al4C3 is improved through the reaction Ti(solute)+Al4C3(s)→TiC(s)+Al(l). With the addition of 1% Al-1Ti-1C master alloy, the average grain size of AZ31 is reduced sharply from 850 μm to 200 μm, and the grain morphology of α-Mg transits from a fully-developed equiaxed dendritic structure to a petal-like shape. Al-C-O-Mn-Fe compounds are proposed to be potent nucleating substrates for primary Mg. Appropriate addition of Ti is believed to increase the grain refinement efficiency of Al4C3-containing Al-Ti-C master alloys in AZ31 alloy.  相似文献   

18.
The microstructures and mechanical properties of Ni-(46-x)Ti-4Al-xZr (x = 0-8, at.%) alloys have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and mechanical tests. The results show that the Ni-Ti-Al-Zr alloys are composed of TiNi and (Ti, Al) 2 Ni with Zr as a solid solution element in both phases, and the third phase, (Zr, Ti, Al) 2 Ni, appears in Ni-40Ti-4Al-6Zr and Ni-38Ti-4Al-8Zr alloys. The compressive yield strength at room temperature increases with the increase of Zr content due to the solid-solution strengthening of Zr and precipitation strengthening of (Ti, Al, Zr) 2 Ni phase. However, the Ni-42Ti-4Al-4Zr alloy exhibits the maximum compressive yield strength at 873 and 973 K because of the softening of (Zr, Ti, Al) 2 Ni phase in the alloys with more Zr addition. The tensile stress-strain tests and the SEM fracture surface observations show that the brittle to ductile transition temperature of Ni-42Ti-4Al-4Zr alloy is between 873 and 923 K.  相似文献   

19.
Spraying of 22 — 45 μm ZrN particles was performed in a controlled-atmosphere chamber using an Ar-N2 plasma. The power levels were varied from 20 to 45 kW. The nitrogen pressure was regulated at either 60, 150 or 700 Torr. Use of the flattening test ensured that the degree of melting of the particles could be controlled. The crystalline structure, microhardness, thermal expansion, microstructure and porosity distribution of the coatings deposited onto steel substrates were examined and compared for the different spraying conditions. The flattening test showed that spraying at 700 Torr improves the heat transfer and leads to dense deposits with good interlamellar cohesion. The microhardness of such deposits varies between 945 and 1045 HV. The sprayed layers are very sensitive to oxidation at temperatures higher than 500 °C, the oxidation modigying their structure and causing a sharp variation in their expansion coefficient (from α = 8 × 10-6 °C-1 below 500 °C to α = 125 × 10-6 °C-1 between 600 °C and 1000 °C). This phenomenon limits the use of ZrN to temperatures lower than 500 °C.  相似文献   

20.
Al-8.4Si-20Cu-10Ge and mixed rare-earth elements (Re) containing Al-8.4Si-20Cu-10Ge-0.1Re filler metals were used for brazing of 6061 aluminum alloy/Ti-6Al-4V. The addition of 20 wt.% copper and 10 wt.% germanium into the Al-12Si filler metal lowered the solidus temperature from 586 °C to 489 °C and the liquidus temperature from 592 °C to 513 °C. The addition of 0.1 wt.% rare-earth elements into Al-8.4Si-20Cu-10Ge alloy caused remarkable Al-rich phase refinement and transformed the needle-like Al2Cu intermetallic compounds into block-like shapes. Shear strengths of the 6061 aluminum alloy/Ti-6Al-4V joints with the two brazing filler metals, Al-8.4Si-20Cu-10Ge and Al-8.4Si-20Cu-10Ge-0.1Re, varied insignificantly with brazing periods of 10-60 min. The average shear strength of the 6061 aluminum alloy/Ti-6Al-4V joints brazed with Al-8.4Si-20Cu-10Ge at 530 °C was about 20 MPa. Rare-earth elements appeared to improve the reaction of the Al-8.4Si-20Cu-10Ge filler metal with Ti-6Al-4V. The joint shear strength of the 6061 aluminum alloy/Ti-6Al-4V with Al-8.4Si-20Cu-10Ge-0.1Re reached about 51 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号