首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Precipitation rates (mm per hour) with 15- and 50-km horizontal resolution are among the initial products of Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit/Humidity Sounder for Brazil (AIRS/AMSU/HSB). They will help identify the meteorological state of the atmosphere and any AIRS soundings potentially contaminated by precipitation. These retrieval methods can also be applied to the AMSU 23-191-GHz data from operational weather satellites such as NOAA-15, -16, and -17. The global extension and calibration of these methods are subjects for future research. The precipitation-rate estimation method presented is based on the opaque-channel approach described by Staelin and Chen (2000), but it utilizes more channels (17) and training data and infers 54-GHz band radiance perturbations at 15-km resolution. The dynamic range now reaches 100 mm/h. The method utilizes neural networks trained using the National Weather Service's Next Generation Weather Radar (NEXRAD) precipitation estimates for 38 coincident rainy orbits of NOAA-15 AMSU data obtained over the eastern United States and coastal waters during a full year. The rms discrepancies between AMSU and NEXRAD were evaluated for the following NEXRAD rain-rate categories: <0.5, 0.5-1, 1-2, 2-4, 4-8, 8-16, 16-32, and >32 mm/h. The rms discrepancies for the 3790 15-km pixels not used to train the estimator were 1.0, 2.0, 2.3, 2.7, 3.5, 6.9, 19.0, and 42.9 mm/h, respectively. The 50-km retrievals were computed by spatially filtering the 15-km retrievals. The rms discrepancies over the same categories for all 4709 50-km pixels flagged as potentially precipitating were 0.5, 0.9, 1.1, 1.8, 3.2, 6.6, 12.9, and 22.1 mm/h, respectively. Representative images of precipitation for tropical, mid-latitude, and snow conditions suggest the method's potential global applicability.  相似文献   

2.
We develop an over-ocean rainfall retrieval algorithm for the Advanced Microwave Sounding Unit (AMSU) based on the Global Satellite Mapping of Precipitation (GSMaP) microwave radiometer algorithm. This algorithm combines an emission-based estimate from brightness temperature (Tb) at 23 GHz and a scattering-based estimate from Tb at 89 GHz, depending on a scattering index (SI) computed from Tb at both 89 and 150 GHz. Precipitation inhomogeneities are also taken into account. The GSMaP-retrieved rainfall from the AMSU (GSMaP_AMSU) is compared with the National Oceanic and Atmospheric Administration (NOAA) standard algorithm (NOAA_AMSU)-retrieved data using Tropical Rainfall Measuring Mission (TRMM) data as a reference. Rain rates retrieved by GSMaP_AMSU have better agreement with TRMM estimates over midlatitudes during winter. Better estimates over multitudes over winter are given by the use of Tb at 23 GHz in the GSMaP_AMSU algorithm. It was also shown that GSMaP_AMSU has higher rain detection than NOAA_AMSU.   相似文献   

3.
With the launch of the NOAA-15 satellite in May 1998, a new generation of passive microwave sounders was initiated. The Advanced Microwave Sounding Unit (AMSU), with 20 channels spanning the frequency range from 23-183 GHz, offers enhanced temperature and moisture sounding capability well beyond its predecessor, the Microwave Sounding Unit (MSU). In addition, by utilizing a number of window channels on the AMSU, the National Oceanic and Atmospheric Administration (NOAA) expanded the capability of the AMSU beyond this original purpose and developed a new suite of products that are generated through the Microwave Surface and Precipitation Products System (MSPPS). This includes precipitation rate, total precipitable water, land surface emissivity, and snow cover. Details on the current status of the retrieval algorithms (as of September 2004) are presented. These products are complimentary to similar products obtained from the Defense Meteorological Satellite Program Special Sensor Microwave/Imager (SSMI) and the Earth Observing Aqua Advanced Microwave Scanning Radiometer (AMSR-E). Due to the close orbital equatorial crossing time between NOAA-16 and the Aqua satellites, comparisons between several of the MSPPS products are made with AMSR-E. Finally, several application examples are presented that demonstrate their importance to weather forecasting and analysis, and climate monitoring.  相似文献   

4.
This paper develops a global precipitation rate retrieval algorithm for the advanced microwave sounding unit (AMSU), which observes 23-191 GHz. The algorithm was trained using a numerical weather prediction (NWP) model (MM5) for 106 globally distributed storms that predicted brightness temperatures consistent with those observed simultaneously by AMSU. Neural networks were trained to retrieve hydrometeor water-paths, peak vertical wind, and 15-min average surface precipitation rates for rain and snow at 15-km resolution at all viewing angles. Different estimators were trained for land and sea, where surfaces classed as snow or ice were generally excluded from this paper. Surface-sensitive channels were incorporated by using linear combinations [principal components (PCs)] of their brightness temperatures that were observed to be relatively insensitive to the surface, as determined by visual examination of global images of each brightness temperature spectrum PC. This paper also demonstrates that multiple scattering in high microwave albedo clouds may help explain the observed consistency for a global set of 122 storms between AMSU-observed 50-191-GHz brightness temperature distributions and corresponding distributions predicted using a cloud-resolving mesoscale NWP model (MM5) and a two-stream radiative transfer model that models icy hydrometeors as spheres with frequency-dependent densities. The AMSU/MM5 retrieval algorithm developed in Part I of this paper is evaluated in Part II on a separate paper.  相似文献   

5.
Only instruments on geostationary or comparable platforms can view global precipitation at the ~15-min interval that is necessary to monitor rapidly evolving convective events. This paper compares the abilities of 11 alternative passive microwave sensors to retrieve surface precipitation rates and hydrometeor water paths. Five instruments observe selected frequencies from 116 to 429 GHz with a filled-aperture antenna, and six instruments observe from 52 to 191 GHz with a U-shaped aperture synthesis array. The analysis is based on neural network retrieval methods and 122 global MM5-simulated storms that are generally consistent with the simultaneous Advanced Microwave Sounding Unit observations. Several instruments show considerable promise in retrieving hydrometeor water paths and 15-min average precipitation rates ~1-100 mm/h with spatial resolutions that vary from ~15 to ~50 km. This space/time resolution is potentially adequate to support assimilation of precipitation information into cloud-resolving numerical weather prediction models.  相似文献   

6.
New state-of-the-art methodology is described to analyze the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit/Humidity Sounder for Brazil (AIRS/AMSU/HSB) data in the presence of multiple cloud formations. The methodology forms the basis for the AIRS Science Team algorithm, which will be used to analyze AIRS/AMSU/HSB data on the Earth Observing System Aqua platform. The cloud-clearing methodology requires no knowledge of the spectral properties of the clouds. The basic retrieval methodology is general and extracts the maximum information from the radiances, consistent with the channel noise covariance matrix. The retrieval methodology minimizes the dependence of the solution on the first-guess field and the first-guess error characteristics. Results are shown for AIRS Science Team simulation studies with multiple cloud formations. These simulation studies imply that clear column radiances can be reconstructed under partial cloud cover with an accuracy comparable to single spot channel noise in the temperature and water vapor sounding regions; temperature soundings can be produced under partial cloud cover with RMS errors on the order of, or better than, 1 K in 1-km-thick layers from the surface to 700 mb, 1-km layers from 700-300 mb, 3-km layers from 300-30 mb, and 5-km layers from 30-1 mb; and moisture profiles can be obtained with an accuracy better than 20% absolute errors in 1-km layers from the surface to nearly 200 mb.  相似文献   

7.
A new global precipitation retrieval algorithm for the millimeter-wave Advanced Microwave Sounding Unit is presented that also retrieves Arctic precipitation rates over surface snow and ice. This algorithm improves upon its predecessor by excluding some surface-sensitive channels and by reducing the number of principal components (PCs) used to represent those that remain. The training sets were also modified to better represent cold regions. The algorithm still incorporates conversion of brightness temperatures to nadir, spatial filtering to better detect pixels scattering near 54 GHz, PC filtering of surface effects, and use of separate neural networks trained with the fifth-generation National Center for Atmospheric Research/Penn State Mesoscale Model (MM5) for land and sea, where warm and cold ocean are now treated differently. The validity of the snowfall detections is supported by nearly coincident CloudSat radar observations, and the physics of the model is largely validated by the reasonable agreement in annual precipitation obtained for 231 globally distributed rain gauges, including many at latitudes where snowfall dominates. Observed annual global precipitation statistics are also presented to permit comparisons with other algorithms and sensors.   相似文献   

8.
A novel statistical method for the retrieval of atmospheric temperature and moisture profiles has been developed and evaluated with simulated clear-air and observed partially cloudy sounding data from the Atmospheric InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU). The algorithm is implemented in two stages. First, a projected principal components (PPC) transform is used to reduce the dimensionality of and optimally extract geophysical profile information from the cloud-cleared infrared radiance data. Second, a multilayer feedforward neural network (NN) is used to estimate the desired geophysical parameters from the PPCs. For the first time, NN temperature and moisture retrievals are presented using actual microwave and hyperspectral infrared observations of cloudy atmospheres, over both ocean and land (with variable terrain elevation), and at all sensor scan angles. The performance of the NN retrieval method (henceforth referred to as the PPC/NN method) was evaluated using global Earth Observing System Aqua orbits colocated with European Center for Medium-range Weather Forecasting fields for seven days throughout 2002 and 2003. Over 350,000 partially cloudy footprints were used in the study, and retrieval performance was compared with the AIRS Science Team Level-2 retrieval algorithm (version 3). Performance compares favorably with that obtained with simulated clear-air observations from the NOAA88b radiosonde set of approximately 7500 profiles. The PPC/NN method requires significantly less computation than traditional variational retrieval methods, while achieving comparable performance.  相似文献   

9.
The assimilation of Atmospheric InfraRed Sounder, Advanced Microwave Sounding Unit-A, and Humidity Sounder for Brazil (AIRS/AMSU/HSB) data by Numerical Weather Prediction (NWP) centers is expected to result in improved forecasts. Specially tailored radiance and retrieval products derived from AIRS/AMSU/HSB data are being prepared for NWP centers. There are two types of products - thinned radiance data and full-resolution retrieval products of atmospheric and surface parameters. The radiances are thinned because of limitations in communication bandwidth and computational resources at NWP centers. There are two types of thinning: (1) spatial and spectral thinning and (2) data compression using principal component analysis (PCA). PCA is also used for quality control and for deriving the retrieval first guess used in the AIRS processing software. Results show that PCA is effective in estimating and filtering instrument noise. The PCA regression retrievals show layer mean temperature (1 km in troposphere, 3 km in stratosphere) accuracies of better than 1 K in most atmospheric regions from simulated AIRS data. Moisture errors are generally less than 15% in 2-km layers, and ozone errors are near 10% over approximately 5-km layers from simulation. The PCA and regression methodologies are described. The radiance products also include clear field-of-view (FOV) indicators. The residual cloud amount, based on simulated data, for FOVs estimated to be clear (free of clouds) is about 0.5% over ocean and 2.5% over land.  相似文献   

10.
The Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit/Humidity Sounder for Brazil (AIRS/AMSU/HSB) instrument suite onboard Aqua observes infrared and microwave radiances twice daily over most of the planet. AIRS offers unprecedented radiometric accuracy and signal to noise throughout the thermal infrared. Observations from the combined suite of AIRS, AMSU, and HSB are processed into retrievals of atmospheric parameters such as temperature, water vapor, and trace gases under all but the cloudiest conditions. A more limited retrieval set based on the microwave radiances is obtained under heavy cloud cover. Before measurements and retrievals from AIRS/AMSU/HSB instruments can be fully utilized they must be compared with the best possible in situ and other ancillary "truth" observations. Validation is the process of estimating the measurement and retrieval uncertainties through comparison with a set of correlative data of known uncertainties. The ultimate goal of the validation effort is retrieved product uncertainties constrained to those of radiosondes: tropospheric rms uncertainties of 1.0 degC over a 1-km layer for temperature, and 10% over 2-km layers for water vapor. This paper describes the data sources and approaches to be used for validation of the AIRS/AMSU/HSB instrument suite, including validation of the forward models necessary for calculating observed radiances, validation of the observed radiances themselves, and validation of products retrieved from the observed radiances. Constraint of the AIRS product uncertainties to within the claimed specification of 1 K/1 km over well-instrumented regions is feasible within 12 months of launch, but global validation of all AIRS/AMSU/HSB products may require considerably more time due to the novelty and complexity of this dataset and the sparsity of some types of correlative observations.  相似文献   

11.
The local spatial scales of tropical precipitating systems were studied using Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rain rate imagery from the TRMM satellite. Rain rates were determined from TMI data using the Goddard Profiling (GPROF) Version 5 algorithm. Following the analysis of Ricciardulli and Sardeshmukh (RS), who studied local spatial scales of tropical deep convection using global cloud imagery (GCI) data, active precipitating months were defined alternatively as those having greater than either 0.1 mm/h or 1 mm/h of rain for more than 5% of the time. Spatial autocorrelation values of rain rate were subsequently computed on a 55/spl times/55 km grid for convectively active months from 1998 to 2002. The results were fitted to an exponential correlation model using a nonlinear least squares routine to estimate a spatial correlation length at each grid cell. The mean spatial scale over land was 90.5 km and over oceans was 122.3 km for a threshold of 0.1 mm/h of rain with slightly higher values for a threshold of 1 mm/h of rain. An error analysis was performed which showed that the error in these determinations was of order 2% to 10%. The results of this study should be useful in the design of convective schemes for general circulation models and for precipitation error covariance models for use in numerical weather prediction and associated data assimilation schemes. The results of the TMI study also largely concur with those of RS, although the more direct relationship between the TMI data and rain rate relative to the GCI imagery provide more accurate correlation length estimates. The results also confirm the strong impact of land in producing short spatial scale convective rain.  相似文献   

12.
A physically oriented inversion algorithm to retrieve precipitation from satellite-based passive microwave measurements named the Bayesian algorithm for microwave-based precipitation retrieval (BAMPR) is proposed. First, we illustrate the procedure that BAMPR follows to produce precipitation estimates from observed multichannel brightness temperatures. Retrieval products are the surface rain rates, columnar equivalent water contents, and hydrometeor content profiles, together with the associated estimation uncertainties. Numerical tests performed on simulated measurements show that retrieval errors are reduced when a rain type and pattern classification procedure is employed, and that estimates are quite sensitive to the adopted error model. Finally, for different tropical storms that were observed by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), we compare the rain retrieved from BAMPR relative to those retrieved from the Goddard Profiling (Gprof) algorithm and the Precipitation Radar-adjusted TMI estimation of rainfall (PATER) algorithm. Despite a similar inversion approach, the algorithms exhibit different performances that can be mainly related to different training databases and retrieval constraints such as cloud classification.  相似文献   

13.
The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), and the Humidity Sounder for Brazil (HSB) form an integrated cross-track scanning temperature and humidity sounding system on the Aqua satellite of the Earth Observing System (EOS). AIRS is an infrared spectrometer/radiometer that covers the 3.7-15.4-/spl mu/m spectral range with 2378 spectral channels. AMSU is a 15-channel microwave radiometer operating between 23 and 89 GHz. HSB is a four-channel microwave radiometer that makes measurements between 150 and 190 GHz. In addition to supporting the National Aeronautics and Space Administration's interest in process study and climate research, AIRS is the first hyperspectral infrared radiometer designed to support the operational requirements for medium-range weather forecasting of the National Ocean and Atmospheric Administration's National Centers for Environmental Prediction (NCEP) and other numerical weather forecasting centers. AIRS, together with the AMSU and HSB microwave radiometers, will achieve global retrieval accuracy of better than 1 K in the lower troposphere under clear and partly cloudy conditions. This paper presents an overview of the science objectives, AIRS/AMSU/HSB data products, retrieval algorithms, and the ground-data processing concepts. The EOS Aqua was launched on May 4, 2002 from Vandenberg AFB, CA, into a 705-km-high, sun-synchronous orbit. Based on the excellent radiometric and spectral performance demonstrated by AIRS during prelaunch testing, which has by now been verified during on-orbit testing, we expect the assimilation of AIRS data into the numerical weather forecast to result in significant forecast range and reliability improvements.  相似文献   

14.
An iterative algorithm incorporating CLEAN deconvolution concepts for precipitation parameter retrieval using passive microwave imagery is presented. The CLEAN algorithm was originally designed to deconvolve single-channel radio astronomy images. In order to use CLEAN to retrieve precipitation parameters from multispectral passive-microwave imagery, extensions of the algorithm to accommodate nonlinear, multispectral, and statistical data mere designed and implemented. The primary advantage of the nonlinear multispectral statistical (NMS) CLEAN retrieval algorithm relative to existing algorithms is the use of high-resolution (high-frequency) imagery to guide the retrievals of precipitation parameters from lower resolution (Low-frequency) imagery. The NMS-CLEAN retrieval algorithm was used to estimate rain rate (RR) and integrated ice content (IIC) using simulated imagery of oceanic convection as would be observed from six channels of the proposed Advanced Microwave-Scanning Radiometer. Both the accuracy and structural detail of the retrieved rain rate were improved relative to the retrievals from a single-step, nonlinear, statistical algorithm. Reduced error and improved spatial resolution of a more minor magnitude was also seen in the integrated ice-content retrievals. This study also showed that spatially-simple storm structures resulted in better performance of the NMS-CLEAN retrieval algorithm  相似文献   

15.
Atmospheric parameter retrievals over land from Advanced Microwave Sounding Unit (AMSU) measurements, such as atmospheric temperature and moisture profiles, could be possible using a reliable estimate of the land emissivity. The land surface emissivities have been calculated using six months of data, for 30 beam positions (observation zenith angles from -58/spl deg/ to +58/spl deg/) and the 23.8-, 31.4-, 50.3-, 89-, and 150-GHz channels. The emissivity calculation covers a large area including Africa, Eurasia, and Eastern South America. The day-to-day variability of the emissivity is less than 2% in these channels. The angular and spectral dependence of the emissivity is studied. The obtained AMSU emissivities are in good agreement with the previously derived SSMI ones. The scan asymmetry problem has been evidenced for AMSU-A channels. And possible extrapolation of the emissivity from window channels to sounding ones has been successfully tested.  相似文献   

16.
An analysis of SeaWinds-based rain retrieval in severe weather events   总被引:1,自引:0,他引:1  
The Ku-band SeaWinds scatterometer estimates near-surface ocean wind vectors by relating measured backscatter to a geophysical model function for the near-surface vector wind. The conventional wind retrieval algorithm does not explicitly account for SeaWinds' sensitivity to rain, resulting in rain-caused wind retrieval error. A new retrieval method, termed "simultaneous wind/rain retrieval," that estimates both wind and rain from rain-contaminated measurements has been previously proposed and validated with Tropical Rain Measuring Mission data. Here, the accuracy of rains retrieved by the new method is validated through comparison with the Next Generation Weather Radar (NEXRAD) in coastal storm events. The rains detected by both sensors are comparable, though SeaWinds-estimated rains exhibit greater variability. The performance of simultaneous wind/rain retrieval in flagging excessively rain-contaminated winds is discussed and compared to existing methods. A new rain-only retrieval algorithm for use in rain-backscatter-dominated areas is proposed and tested. A simple noise model for SeaWinds rain estimates is developed, and Monte Carlo simulation is employed to verify the model. The model shows that SeaWinds rain estimates have a standard deviation of 2.5 mm/h, which is higher than the NEXRAD measurements. Thresholding SeaWinds rain estimates at 2 mm/h yields a better rain flag than current rain flag algorithms.  相似文献   

17.
The emission and scattering from desert surfaces are analyzed using simulations and measurements from the Special Sensor Microwave/Imager (SSM/I) and the Advanced Microwave Sounding Unit (AMSU) microwave satellite instruments. Deserts are virtually free of vegetation, so the satellite radiometers are able to observe the emissivities of different minerals, such as limestone and quartz. Moreover, since deserts contain little moisture, the thermal emission originates below the surface at a depth of many wavelengths. At high frequencies, where the penetration depth of radiation is smallest, the radiometric measurements display the large diurnal variation in surface temperature, which reaches its maximum at around 1 P.M. Conversely, at low frequencies, where the penetration depth is largest, the radiation measurements display the small diurnal variation of subsurface temperature, which reaches a minimum at around 6 A.M. In addition to these emission signals, sand particles also scatter microwave radiation. Volume scattering causes the measurements to decrease as the frequency increases; although compared to other scattering media (snow cover and precipitation), the larger absorption and fractional volume (i.e., solidity) of sand reduce the scattering. Although the scattering effect is small, SSM/I measurements between 19 and 85 GHz show that deserts scatter the upwelling microwave radiation in a manner similar to light precipitation, which makes it difficult to uniquely identify precipitation over arid regions. Interestingly, the higher frequency AMSU measurement at 150 GHz is nearly the same as at 89 GHz for deserts, whereas the 150-GHz measurement is much lower than at 89 GHz for precipitation. These different spectral features at high frequencies can provide a means of separating the scattering from desert surfaces from that of precipitation.  相似文献   

18.
An integrated regional model is proposed for rain-rate retrievals over land/ocean from the brightness temperature (Tb) values of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The polarization-corrected temperature calculated from the 85.5-GHz channels is also considered as one of the inputs along with the nine channel Tb values. This model is applicable over the region between and . For this purpose, an artificial neural network is utilized. The collocated precipitation radar (PR) near-surface rain rates as given by a 2A25 data product is considered as a target value. The methodology consists of the separation of land and ocean pixels, the separation of stratiform and convective pixels over land/ocean, and the selection of important features (inputs) for the multilayer perceptron network by the feature selection technique for each group. For the separation of land/ocean pixels, the Tb values of the 10.65-GHz vertical channel are utilized. The values are utilized to separate the stratiform and convective pixels both over land and ocean. The rain retrieval from the developed model is validated with TRMM PR. Overall result shows the better agreement of the model-retrieved rain rate with the PR observation compared to the TMI (2A12) rain rate particularly over land. The rain retrieved from the developed model is further validated with Doppler weather radar. A reasonably good agreement is observed between these two estimations.  相似文献   

19.
A numerical simulator for analysis of multispectral passive microwave mapping and retrieval is described. This simulator allows evaluation and optimization of satellite-based cloud and precipitation parameter retrieval algorithms. It contains three major components: the forward radiative transfer model, the sensor observation model, and the parameter retrieval algorithm. Simulated spaceborne observations of an oceanic tropical squall sampled at five stages in time are demonstrated for a simplified version of the proposed Earth Observation System (EOS) Multifrequency Imaging Microwave Radiometer (MIMR). The simulator uses a nonlinear statistical retrieval algorithm consisting of a Karhunen-Loeve (KL) transform, a projection operator, a nonlinear inverse mapping and a linear minimum mean-square error estimator. Retrievals of rain rate and integrated ice content are performed for each evolutionary frame at both full spatial resolution (1.5 km) and the degraded spatial resolution of a MIMR-class system. Results are presented for both KL-based and brightness temperature-based retrieval algorithms. It is found that the KL-based algorithm has a reduced complexity and performs better than the brightness temperature-based algorithm for degraded resolution imagery, especially for rain rate retrievals. In addition, rain rate retrievals are more affected by low image resolution than are integrated ice content retrievals. Retrieval accuracy of both rain and integrated ice is also found to depend on the evolutionary stage of the storm  相似文献   

20.
A method to retrieve the surface emissivity of sea ice at the window channels of the Advanced Microwave Sounding Unit (AMSU) radiometers in the polar region is presented. The instruments are on the new-generation satellites of the U.S. National Oceanic and Atmospheric Administration (NOAA-15, NOAA-16, and NOAA-17). The method assumes hypothetical surfaces with emissivities zero and one and simulates brightness temperatures at the top of the atmosphere using profiles of atmospheric parameters, e.g., from the European Centre for Medium-Range Weather Forecasts (ECMWF) model runs, as input for a radiative transfer model. The retrieval of surface emissivity is done by combining simulated brightness temperatures with the satellite-measured brightness temperature. The AMSU window channels differ in surface penetration depths and, thus, in the surface microphysical parameters that they depend on. Lowest layer air temperatures from ECMWF are used to infer temperatures of emitting layers at different frequencies of sea ice. A complete yearly cycle of monthly average emissivities in two selected regions (first- and multiyear ice) is giving insight into the variation of emissivities in various development stages of sea ice.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号