首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Fatty acids are produced industrially from tallow, palm oil, palm stearin, palm kernel oil and coconut oil. The current and future supply situations of these raw materials and market economics favor palm stearin and palm kernel oil as major raw materials for fatty acids. The Malaysian oleochemical industry has adopted high-temperature and high-pressure “splitting” of triglycerides. Variations in product yields occurring in the processing of tallow and palm stearin and of coconut oil and palm kernel oil are indicated. Developments on the enzymic hydrolysis of triglycerides to fatty acids have been made, particularly in Japan. Enzymic hydrolysis at low temperature has the advantage of energy conservation compared to the high-temperature and pressure-splitting process. But enzymic hydrolysis is only applicable to triglycerides of low titre, such as palm kernel oil.  相似文献   

2.
The catalytic activity of different heterogeneous sulfonic acid-modified catalysts has been assayed in the simultaneous esterification of FFA and transesterification of triglycerides of crude palm oil (FFA content of 5.6 wt%) with methanol, demonstrating the applicability of this kind of acid solids to the one-step production of biodiesel from FFA-containing vegetable oils. The yield towards fatty acid methyl esters (FAMEs) obtained over these acid materials is enhanced when increasing the acid strength of the catalytic site. Likewise, the use of mesostructured supports has been shown as a factor improving the catalytic performance as compared with macroporous sulfonic acid-based resins, likely due to an enhancement of the mass transfer rates of large molecules, such as triglycerides, within the catalyst structure. Thus, the combination of the open mesoporous structure of a SBA-15 silica support with relatively strong arenesulfonic acid sites leads to a material able to yield high conversion of triglycerides and free fatty acids. Furthermore, a study on the transesterification reaction of crude palm oil with methanol through a surface response analysis has provided as optimal conditions the following: temperature 160 °C, catalyst loading 5.1 wt% referred to the amount of palm oil, and methanol to oil molar ratio 30. Under these conditions, almost 90% of the starting oil is converted to FAME after reacting for just 2 h of reaction. Likewise, surface response analysis has evidenced a strong interaction between temperature and methanol to oil ratio.  相似文献   

3.
Palm olein was modified via lipase-catalyzed acidolysis reaction to obtain fatty acid composition and positional distribution similar to human milk fat. In the reaction, a free fatty acid mix containing 23.23 % docosahexaenoic (DHA), 31.42 % gamma-linolenic (GLA), and 15.12 % palmitic acid was employed. The DHA and GLA were incorporated into the structured lipid (SL) product to improve its nutritional value. Response surface methodology (RSM) was used to investigate the effects of reaction time and substrate mole ratio (palm olein to a free fatty acid mix) on the amount of palmitic acid at the sn-2 position of SL triacyglycerols (TAG), and on the total DHA and GLA incorporation. Gram-scale production of SL was performed using the conditions predicted by RSM to maximize the content of palmitic acid at the sn-2 position. Verification of the predictions from RSM confirmed its practical utility. The resulting SL had 35.11 % palmitic acid at the sn-2 position, with 3.75 % DHA and 5.03 % GLA. Differential scanning calorimetry and HPLC analyses of the TAG revealed changes in their polymorphic profiles and TAG molecular species of SL compared to palm olein. The SL from this study can potentially be used in infant formula formulations.  相似文献   

4.
A structured lipid (SL) with a substantial amount of palmitic acid at the sn‐2 position and enriched with capric acid (C), was produced in two enzymatic interesterification stages by using immobilized lipase, Lipozyme® TL IM (Novozymes North America Inc., Franklinton, NC, USA). The substrates for the reactions were high melting point palm stearin, high oleic sunflower oil and tricaprin. The SL was characterized for total and positional fatty acid profiles, triacylglycerol (TAG) molecular species, free fatty acid content, melting and crystallization profiles. The final SL contained 20.13 mol% of total palmitic acid, of which nearly 40 % was located at the sn‐2 position. The total capric acid content was 21.22 mol%, mostly at the sn‐1 and sn‐3 positions. The predominant TAGs in the SL were oleic–palmitic–oleic, POP and CLC. The melting completion and crystallization onset temperatures of the SL were 27.7 and 6.1 °C, respectively. The yield for the overall reaction was 90 wt%. This SL might be totally or partially used in commercial fat blends for infant formula.  相似文献   

5.
The objective of the work was to produce capric acid rich structured lipids starting from various Indian indigenous vegetable oils, such as rice bran, ground nut and mustard oils. Acidolysis reaction between individual vegetable oils and capric acid in one is to three molar ratios at 45 degree centigrade temperature was carried out using position specific Candida antarctica lipase so as to protect the Sn-2 position of the oils which are rich in unsaturated fatty acids. The incorporation of capric acid depended on the reaction time showing 6 % within 6 h and 30.8 % in 72 h with rice bran oil. Similarly, in ground nut oil incorporation of capric acid was 34.2 % in 72 h compared to 5.3 % in 6 h. Thus mustard oil showed much lower incorporation than the other two oils, with 3.3 % and 19.5 % in 6 and 72 h respectively. The incorporation of capric acid was influenced by the nature of the fatty acids present in the original oil. The fatty acid composition of Sn-2 position of the structured triacylglycerols of the three oils revealed that capric acid was mainly replacing the fatty acids occupying the Sn-1 and 3 positions of the triglyceride molecule.  相似文献   

6.
Detergent fractionation (Lanza process) offers a valuable separation process for edible oils that contain varying amounts of saturated and unsaturated fatty acids. The rice bran oil fatty acid distillate (RBOFAD), obtained as a major byproduct of rice bran oil deacidification refining process, was fractionated by detergent solution into a fatty acid mixture as follows: low-melting (19.00 °C) fraction of fatty acids as olein fraction (44.50 g/100 g) and high-melting (49.00 °C) fatty acids as stearin fraction (37.15 g/100 g). A high amount of palmitic acid (42.75 wt%) is present in stearin fraction, while oleic acid is higher (48.21 wt%) in the olein fraction. The stearin and olein fractions of RBOFAD with very high content of free fatty acids are converted into neutral glycerides by autocatalytic esterification reaction with a theoretical amount of glycerol at high temperatures (130–230 °C) and at a reduced pressure (30 mmHg). Acid value, peroxide value, saponification value, and unsaponifiable matters are important analytical parameters to identity for quality assurance. These neutral glyceride-rich stearin and olein fractions, along with unsaponifiable matters, can be used as nutritionally and functionally superior quality food ingredients in margarine and in baked goods as shortenings.  相似文献   

7.
Human milk and infant formula containing coconut/soy oil were infused into the duodenum of rats to determine the incorporation of capric, lauric, myristic and palmitic acids into lymphatic triacylglycerol (TAG). The proportion of capric and lauric acids in the lymphatic TAG reflected the fatty acid composition of the diet. Based on positional analysis, it appears that more than 50% of the capric and lauric acids could have been absorbed from the intestine assn-2 monoacylglycerols. In the rats fed human milk, 50% of palmitic acid in lymphatic TAG was in thesn-2 position. Because of the nonrandom distribution of palmitic acid in the lymphatic TAG, the nonspecific lipase in human milk, i.e., bile salt-stimulated lipase, did not appear to be a factor in milk lipid digestion.  相似文献   

8.
The seeds of Commiphora wightii (Arnott) Bhandari contain 9.8 ± 0.7% oil. The fatty acid composition and chemical properties of the extracted oil were determined. Gas liquid chromatography of the methyl esters of the fatty acids shows the presence of 46.62% saturated fatty acids and 51.40% unsaturated fatty acids. The fatty acid composition is as follows: capric acid 3.50%, myristic acid 14.51%, palmitic acid 6.68%, stearic acid 4.70%, arachidic acid 3.18%, behenic acid 14.05%, myristoleic acid 1.34%, palmitoleic acid 12.07%, oleic acid 14.15%, eicosenoic acid 0.11%, linoleic acid 22.34% and alpha linoleic acid 1.37%.  相似文献   

9.
Response surface methodology was used to model and optimize the acidolysis of virgin olive oil with caprylic (C8:0) or capric (C10:0) acids, aimed at the production of low caloric triacylglycerols (TAG) of MLM type, in solvent free media, catalyzed by the heterologous Rhizopus oryzae lipase (r-ROL) immobilized in Eupergit® C. This lipase was produced in the methylotrophic yeast Pichia pastoris Muts phenotype (experiments with C10:0) or a Mut+ phenotype (experiments with C8:0), under different operational conditions. The r-ROL used in experiments with C10:0 presented a hydrolytic activity about 5 times of that presented by r-ROL used in acidolysis with C8:0. The experiments were carried out following a central composite rotatable design, as a function of the molar ratio (MR) medium chain fatty acid/TAG (1.6–4.4) and temperature (25–55 °C). Convex surfaces described by second order polynomials as a function of MR and temperature were well fitted to fatty acid incorporation values. After 24-h reaction, the predicted maximum incorporation of caprylic (15.5 mol%) or capric (33.3 mol%) acids in olive oil occurs at 37 and 35 °C, respectively, and at C8:0/TAG of 2.8:1 or C10:0/TAG of 3:1. These predicted optima were experimentally validated. Fermentation conditions used in r-ROL production highly affected hydrolytic activity and to a lesser extent interesterification activity.  相似文献   

10.
Production of human milk fat substitutes (HMFSs) from three types of palm stearin with palmitic acid (PA) of 91.3, 70.3 and 62.6 %, respectively, was scaled up to a kilogram scale. The physiochemical properties of these products including fatty acid profiles, triacylglycerol compositions, tocopherol contents, oxidative stability and melting and crystallization profiles were compared with those of HMFSs from lard, butterfat and tripalmitin and fats from infant formulas. Based on their chemical compositions, HMFSs from palm stearin with PA contents of 70.3 and 62.6 % produced by enzymatic acidolysis were found to have the highest degree of similarity to human milk fat, which indicated that these HMFSs were the most suitable for use in infant formulas. However, HMFSs from palm stearin with PA content of 91.3 % had the highest tocopherol contents. By investigation of the primary and secondary oxidation products during accelerated oxidation, the oxidative stability of HMFSs was found to be positively correlated to the contents of tocopherols, and the volatile oxidation compounds with the highest relative contents in HMFSs were aldehydes analyzed by solid-phase microextraction-GC–MS. All HMFSs had final melting points lower than body temperature.  相似文献   

11.
Lecitase Ultra and 6 triacylglycerol lipases (lipases PS, M, AH, AY, R, and AK) were immobilized on Amberlite XAD 7HP and used to catalyze the acidolysis reaction between lecithin and capric acid (C10:0) for comparison. The highest molar incorporation value (51.0 mol%) was observed for the immobilized Lecitase Ultra. Further, immobilized Lecitase Ultra was selected for catalyzing acidolysis between lecithin and fatty acids with different chain lengths (C6:0, C8:0, C10:0, C12:0, and C14:0). After reaction, free fatty acids were removed by SPE and the resultant was called modified lecithin fraction 1 (MLF1). The highest molar incorporation value was obtained for C10:0 (51.0 mol%) at 45 °C with a mole ratio of 10/1 (C10:0/lecithin) for 72 h. After removal of lysophosphatidylcholine by solid-phase extraction from MLF1, the resultant modified lecithin fraction 2 (MLF2) was used to prepare an oil-in-water emulsion. All emulsions prepared with MLF2 exhibited significantly higher emulsion stability (ES) values (16.2–17.7) and smaller particle sizes (d 32 0.40–0.49 μm, d 43 0.75–1.01 μm) than the emulsion prepared with unmodified lecithin (ES 14.1, d 32 0.76 μm, d 43, 1.26 μm) (P < 0.05). Furthermore, less clarification and droplet aggregation were observed in emulsions prepared with MLF2 than in lecithin-based emulsions. Overall, the MLF2s showed better emulsifying properties than lecithin.  相似文献   

12.
Partial glycerides are important constituents of palm oil and can have significant effects on the physical properties of products containing palm oil or on the fractionation of palm oil. A method is described for their routine determination in palm oil. By analysis of 28 weekly composite samples of crude palm oil the following results were obtained: free fatty acids, mean=3.76%, range 2.4 to 4.5%; monoglycerides, mean=0.28%, range 0.21 to 0.34%; diglycerides, mean=6.30%, range 5.3 to 7.7%. During detergent fractionation of palm oil, diglycerides concentrate in the palm olein, but monoglycerides concentrate in the palm stearin. Palm fatty acid distillate was found to contain approximately 3% each of mono- and diglycerides. Because the refining and fractionation processes are continuous in the refinery, it is not possible to follow a single identifiable batch of crude palm oil through the refinery. To circumvent this problem, crude palm oil, stearin and olein from the refinery were bleached and steam refined in the laboratory and the partial glyceride contents determined at each stage of processing. Except for fractionation, the content of glycerides did not change during processing. For oil, olein and stearin, monoglycerides were reduced significantly both after bleaching and after steam refining.  相似文献   

13.
This paper reports on the synthesis of triglycerides by enzymatic esterification of polyunsaturated fatty acids (PUFA) with glycerol. A PUFA concentrate obtained from cod liver oil was used to optimize the reaction to favor triglyceride synthesis with lipases. The type and amount of lipase and organic solvent, glycerol content, temperature, water content, and amount and time of addition of molecular sieves were studied. The optimal reaction mixture and conditions were: 9 mL hexane, 60°C, 0.5% (vol/vol) water, 1 g molecular sieves added after 24 h of reaction, glycerol/fatty acid molar ratio 1:3 and 100 mg of Novozym 435 (Novo Nordisk A/S) lipase. Under these conditions, an enriched triglyceride yiedl of 84.7% containing 27.4% eicosapentaenoic acid and 45.1% docosahexaenoic acid was obtained from a cod liver oil PUFA concentrate.  相似文献   

14.
Palm stearin (POs) is one of the cheapest sources of C16–C18 fatty acids for use in soap making. Toilet-soap formulations containing a high content of POs, however, would result in hard soaps with a tendency to form cracks on the surface. This phenomenon can be overcome by addition of superfatting agents to increase plasticity of the finished product. In this study, two different blends of soap made from distilled POs, palm oil (PO), and palm kernel oil (PKO) fatty acids in the ratio of 40POs/40PO/20PKO and 70POs/30PKO were evaluated. The soaps were superfatted with glycerin, palm kernel olein, coconut oil, olive oil and canola oil. The levels of incorporation of each superfatting material were 1, 2, 4, and 6%, respectively. The samples were subsequently tested for both wet and dry crackings using the Hewitt Soap Company methods (numbers 78 and 79, respectively). The superfatted soaps had a total fatty matter of 73–83% and an average moisture content of 10%. The penetration value which indicates hardness increased with increasing amount of superfatting agents. Foaming or lathering property was good with the exception of the formulation using palm kernel olein and canola oil as superfatting agents. At all the above levels of superfatting agents added, no cracks were observed during both wet and dry cracking tests. A sample of soap superfatted with 2% canola oil, however, developed cracks during the wet cracking test. This resulted in a test score of 7. Superfatting soaps with 1–2% neutral oils or glycerin resulted in better quality soaps that were free of cracks.  相似文献   

15.
Epoxides of soybean oil methyl esters (SMEs) are biodegradable, non‐toxic, and renewable epoxy plasticizers. The objective of the present work was to investigate the effects of free fatty acids on the enzymatic epoxidation of SMEs. The results showed that the epoxidation of SMEs depended on the type of the added free fatty acid. For saturated (≤C18:0) and monounsaturated free fatty acids, the epoxy oxygen group content (EOC) of SMEs increased with increasing carbon chain length of free fatty acids; for branched‐chain unsaturated free fatty acids, the EOC of SMEs decreased in the presence of hydroxyl group (OH) and hydroperoxide (OOH) of free fatty acids; the EOC of SMEs decreased with increasing number of double bonds of free fatty acids. The maximum EOC and the initial epoxidization rate (V0) linearly decreased with increasing peroxide value of SMEs. The highest EOC (6.87 ± 0.3%) of SMEs was obtained using behenic acid as reaction material, which was similar with that of stearic acid (EOC 6.75 ± 0.2%).  相似文献   

16.
Solvent-free lipase-catalyzed incorporation of stearic acid in palm olein by the 1,3-regiospecific Novo Lipase Lipozyme IM20 resulted in the formation of a complex mixture of fatty acid glycerides and free fatty acids. The stearoyl incorporation in palm olein gave rise to the formation of 39.3% of the desired cocoa butter-like triglycerides in the fatty acid glyceride portion, namely distearoyl-oleoyl-glycerol (SOS), palmitoyl-oleoyl-stearoyl-glycerol (POS) and dipalmitoyl-oleoyl-glycerol (POP). A combination of fractionation steps involving initially the removal of free fatty acids (FFA) from the product mixture by steam distillation under vacuum, followed by fractional crystallization of the fatty acid-free glycerides in hexane and/or acetone, gave a fat, whose triglyceride composition and melting profile were comparable to that of cocoa butter as adduced by reversed-phase high performance liquid chromatography (HPLC) and differential scanning calorimetry (DSC). The yield of the cocoa butter-like fat was approximately 25% of the weight of the original palm olein.  相似文献   

17.
Immobilized lipase, IM60, from Rhizomucor miehei was used as a biocatalyst for the incorporation of capric acid (C10:0) into fish oil originally containing 40.9 mol% eicosapentaenoic (20:5n-3) and 33.0 mol% docosahexaenoic (22:6n-3) acid. Acidolysis was performed with and without organic solvent. Pancreatic lipase-catalyzed sn-2 positional analysis was performed after enzymatic modification. Tocopherol analysis was performed before and after enzymatic modification. Products were analyzed by gas-liquid chromatography. After a 24-h incubation in hexane, there was an average of 43.0±1.6 mol% incorporation of C10:0 into fish oil, while 20:5 and 22:6 decreased to 27.8±2.2 and 23.5±1.3 mol%, respectively. The solvent-free reaction produced an average of 31.8±8.5 mol% C10:0 incorporation, while 20:5 and 22:6 decreased to 33.2±3.3 and 28.3±3.9 mol%, respectively. The effect of incubation time, substrate molar ratio, enzyme load, and added water were also studied. In general, as the enzyme load, molar ratio, and incubation time increased, mol% C10:0 incorporation also increased. The optimal mol% C10:0 incorporation was 41.2% at 48 h for the reaction in hexane and 46.4% at 72 h for the solvent-free reaction. The highest C10:0 incorporation (65.4 mol%) occurred at a molar ratio of 1:8 (fish oil triacylglycerols/capric acid) in hexane. For the solvent-free reaction, the optimal mol% C10:0 incorporation (56.1 mol%) occurred at a molar ratio of 1:6. An enzyme load of 10% gave the highest mol% C10:0 incorporation (41.4 mol%) in hexane; the highest incorporation (38.3 mol%) for the solvent-free reaction occurred at 15% enzyme load. Mol% incorporation of C10:0 declined with increasing amounts of added water. The optimal mol% C10:0 incorporation occurred at 1% added water (47.9 mol%) for the reaction in hexane, and at zero added water for the solvent-free reaction (21.8 mol%). Fish oil containing capric acid was successfully produced and may be nutritionally more beneficial than unmodified oil.  相似文献   

18.
The application of membrane technology to the enzymatic production of specific structured lipids has been investigated in this work. Membrane screening was carried out in a membrane diffusion cell. Twenty-six flat membranes of different materials were tested using rapeseed oil and capric acid. The suitable membranes were selected in terms of higher fatty acid and lower rapeseed oil permeation rates. The stability of membranes and the effect of fatly acid chain length on effluent fluxes were also investigated. Reaction experiments were carried out in a membrane reactor between medium-chain triacylglycerols and n−3 polyunsaturated fatty acids (PUFA) from fish oil. Lipozyme IM was used as the biocatalyst. The incorporation of PUFA into medium-chain triacylglycerols was increased by about 15% in a PUFA 90-h reaction by simultaneous separation of the released medium-chain fatty acids, compared to no separation under the same reaction conditions. It has thus clearly been demonstrated that membrane-assisted separation improved the incorporation of acyl donors into oils beyond the reaction equilibrium defined by the original substrate concentration.  相似文献   

19.
Soaps made from blends of distilled palm stearin (PS) and palm (PK) kernel fatty acids were evaluated for total fatty matter, sodium chloride content, moisture content, hardness, Hunter whiteness, foamability, iodine value, titer value, and acid value. Data showed that these soaps had properties similar to palm-based soaps made from distilled palm oil and palm kernel fatty acids. The soaps showed good whiteness (greater than 80%) and foamability. Total fatty matter ranged from 10–18%, sodium chloride content was 0.5%, and free caustic was 0.1% except for blend 8 containing 10 PS:90 PK, which had a free caustic of 0.03%. Initial penetration value, a reflection of soap hardness, ranged from 32–126 mm, with an average value of 54 mm. This value is within the range of the best blends of palm-based soaps (50–63 mm). There was no obvious trend observed. Penetration value, however was found to stabilize after a month of storage with an average value of 19.4 mm. Soap with this hardness value is relatively hard and therefore should be blended with a small amount of soft oils.  相似文献   

20.
Phenyl fatty hydroxamic acids (PFHAs) were synthesized from canola or palm oils and phenyl hydroxylamine (FHA) catalyzed by Lipozyme TL IM or RM IM. The reaction was carried out by shaking the reaction mixture at 120 rpm. The optimization was carried out by changing the reaction parameters, namely; temperature, organic solvent, amount and kind of enzyme, period of reaction and the mol ratio of reactants. The highest conversion was obtained when the reaction was carried out under the following conditions: temperature, 39°C; solvent, petroleum ether; kind and amount of lipase, 80 mg Lipozyme TL IM/mmol oil; reaction period, 72 h and FHA-oil ratio, 7.3 mmol FHA/ mmol oil. The highest conversion percentage of phenyl hydroxylaminolysis of the Ladan and Kristal brands commercial canola oils, palm stearin and palm kernel oils were 55.6, 52.2, 51.4 and 49.7 %, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号