首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
密封端面间润滑流体的非牛顿特性对密封的性能有重要影响。基于满足质量守恒的JFO空化边界条件及描述流体非牛顿特性的幂律模型,建立了考虑流体非牛顿特性的螺旋槽液膜密封数学模型。采用有限差分法对控制方程进行离散,通过SOR迭代方法对离散方程进行求解,得到了密封端面液膜压力分布。探讨了润滑流体的非牛顿特性对螺旋槽液膜密封的液膜承载能力、泄漏量、摩擦扭矩等性能参数及液膜中空化发生情况的影响规律。结果表明:随着幂律指数的增大,液膜承载能力先增大后减小,泄漏量和空化率增大,摩擦扭矩减小;幂律指数为0.96时,相对于牛顿流体,液膜承载能力提升约4.6%,密封端面空化率下降约98.6%,泄漏量下降约5.8%,摩擦扭矩增加约0.3%;随着操作参数的改变,不同幂律指数下的流体动压性能参数变化规律具有相似性;润滑流体的合理选择对液膜密封性能改善有重要意义。  相似文献   

2.
为降低密封面间液体流动发散区液膜压力损失及提高密封性能,在矩形截面螺旋槽中引入周向斜面台阶结构并建立物理模型。基于JFO空化边界,探讨了不同槽深时,斜面转角比对液膜压力、降低空穴发生及流体动压性能的影响。结果表明:当斜面转角比小于1/30时,下游泵送或上游泵送液膜密封的周向膜压或螺旋线方向膜压均得到迅速提升而空化面积比迅速降低,尤其是上游泵送密封;随斜面转角比增大,空化面积比先增大后减小,空穴区中液膜开始破裂位置前缘压力呈增加趋势,而液膜重生成位置后缘压力反之。槽深的增加有助于提升液膜压力和降低空化面积比,当槽深为8~12μm,在斜面转角比为0.1~0.3时,两类型液膜密封承载能力均可达到最大值,前者最大增幅约13.5%,后者约28%;摩擦扭矩最大增幅约4.6%,增幅较小;泄漏量随斜面转角比的变化规律与承载能力相似。  相似文献   

3.
周向斜面台阶螺旋槽液膜密封流体动压性能   总被引:1,自引:1,他引:0       下载免费PDF全文
为降低密封面间液体流动发散区液膜压力损失及提高密封性能,在矩形截面螺旋槽中引入周向斜面台阶结构并建立物理模型。基于JFO空化边界,探讨了不同槽深时,斜面转角比对液膜压力、降低空穴发生及流体动压性能的影响。结果表明:当斜面转角比小于1/30时,下游泵送或上游泵送液膜密封的周向膜压或螺旋线方向膜压均得到迅速提升而空化面积比迅速降低,尤其是上游泵送密封;随斜面转角比增大,空化面积比先增大后减小,空穴区中液膜开始破裂位置前缘压力呈增加趋势,而液膜重生成位置后缘压力反之。槽深的增加有助于提升液膜压力和降低空化面积比,当槽深为8~12 μm,在斜面转角比为0.1~0.3时,两类型液膜密封承载能力均可达到最大值,前者最大增幅约13.5%,后者约28%;摩擦扭矩最大增幅约4.6%,增幅较小;泄漏量随斜面转角比的变化规律与承载能力相似。  相似文献   

4.
针对机械端面密封的反向螺旋槽结构,基于遵循质量守恒的JFO空化边界条件,采用SUPG有限元方法求解Reynolds方程,研究了反向螺旋槽的空化效应,基于此,提出了一种新型的正反向螺旋槽组合端面密封结构,分析了不同工况条件下的密封性能。结果表明:反向螺旋槽区域易发生液膜空化,周期性分布的空化区会显著影响端面流场,空化区的低压力可将内径侧流体抽吸到密封端面,实现上游泵送。新型正反向螺旋槽端面密封结构结合了反向螺旋槽产生的泄漏控制作用和正向螺旋槽产生的流体动压效应,同时具备良好的上游泵送能力和动压承载能力。  相似文献   

5.
针对机械端面密封的反向螺旋槽结构,基于遵循质量守恒的JFO空化边界条件,采用SUPG有限元方法求解Reynolds方程,研究了反向螺旋槽的空化效应,基于此,提出了一种新型的正反向螺旋槽组合端面密封结构,分析了不同工况条件下的密封性能。结果表明:反向螺旋槽区域易发生液膜空化,周期性分布的空化区会显著影响端面流场,空化区的低压力可将内径侧流体抽吸到密封端面,实现上游泵送。新型正反向螺旋槽端面密封结构结合了反向螺旋槽产生的泄漏控制作用和正向螺旋槽产生的流体动压效应,同时具备良好的上游泵送能力和动压承载能力。  相似文献   

6.
以高温油泵用螺旋槽液膜密封为研究对象,建立新型双端面液膜密封整体全尺寸三维模型,分析了幂律指数对螺旋槽液膜密封温度场影响规律。当幂律指数变大、密封端面温度升高、温度梯度逐渐增大时密封端面温度与幂律指数的相关性变大;转速升高、槽角变大、槽数增多、槽深加深,均导致密封环温度升高;当幂律指数一定时,缓冲液压力对密封环温度基本无影响,幂律指数越大,其对密封环温度影响越小。  相似文献   

7.
为了探究相变现象对密封性能的影响规律,通过联立N-S方程与质量输运方程,建立了液膜密封相变模型,使用有限体积法对控制方程进行离散,对双列螺旋槽液膜密封相变现象进行了仿真模拟,获得了液膜流线及相态分布并分析了结构参数对相变区域与密封性能的影响。结果表明:液膜发生相变后物性参数发生变化,密封间隙内流场与端面压力分布发生明显改变。内侧螺旋槽可以提供稳定的开启力并保证密封端面处于较好的润滑状态,但同时导致密封泄漏增加。通过减小外侧螺旋槽槽面宽比、槽台宽比、螺旋角、槽深或增大外侧螺旋槽槽数均可降低密封泄漏量,提升密封性能。  相似文献   

8.
为了探究相变现象对密封性能的影响规律,通过联立N-S方程与质量输运方程,建立了液膜密封相变模型,使用有限体积法对控制方程进行离散,对双列螺旋槽液膜密封相变现象进行了仿真模拟,获得了液膜流线及相态分布并分析了结构参数对相变区域与密封性能的影响。结果表明:液膜发生相变后物性参数发生变化,密封间隙内流场与端面压力分布发生明显改变。内侧螺旋槽可以提供稳定的开启力并保证密封端面处于较好的润滑状态,但同时导致密封泄漏增加。通过减小外侧螺旋槽槽面宽比、槽台宽比、螺旋角、槽深或增大外侧螺旋槽槽数均可降低密封泄漏量,提升密封性能。  相似文献   

9.
运行工况的瞬时变化严重影响密封性能。利用Matlab建立密封环端面间隙液膜三维模型,采用有限差分法离散基于JFO空化边界条件的雷诺方程,应用SOR迭代求解液膜压力分布,进一步耦合求解雷诺方程与瞬态动力学方程,分析工况连续变化及压力扰动对密封瞬态特性的影响。结果表明:相比于转速瞬时变化,压力瞬时变化过程中挤压效应对密封性能的影响更为显著,密封端面趋近速度越大,由液膜挤压产生的承载能力越高,端面流体被排出的速度越大;压力瞬时变化易引发静环轴向速度振荡,压差越大,振荡幅值越大;压力扰动情况下,空化率与泄漏量急剧突变后趋于稳定,压力突升相比于压力突降更易恢复稳定状态;摩擦扭矩在变工况过程中平稳变化,无较大幅度波动。  相似文献   

10.
液膜密封非定常工况下的瞬态特性   总被引:1,自引:0,他引:1       下载免费PDF全文
运行工况的瞬时变化严重影响密封性能。利用Matlab建立密封环端面间隙液膜三维模型,采用有限差分法离散基于JFO空化边界条件的雷诺方程,应用SOR迭代求解液膜压力分布,进一步耦合求解雷诺方程与瞬态动力学方程,分析工况连续变化及压力扰动对密封瞬态特性的影响。结果表明:相比于转速瞬时变化,压力瞬时变化过程中挤压效应对密封性能的影响更为显著,密封端面趋近速度越大,由液膜挤压产生的承载能力越高,端面流体被排出的速度越大;压力瞬时变化易引发静环轴向速度振荡,压差越大,振荡幅值越大;压力扰动情况下,空化率与泄漏量急剧突变后趋于稳定,压力突升相比于压力突降更易恢复稳定状态;摩擦扭矩在变工况过程中平稳变化,无较大幅度波动。  相似文献   

11.
螺旋槽液膜密封端面空化发生机理   总被引:11,自引:8,他引:3       下载免费PDF全文
液膜中空化的发生直接影响着密封流体动压润滑性能,基于质量守恒的JFO边界条件,建立考虑表面粗糙度的螺旋槽液膜密封物理模型,经坐标变换将不规则物理域转换成规则计算域,采用有限控制体积法离散控制方程并求解,分析了膜厚、表面粗糙度、螺旋槽功用(上游泵送和下游泵送)、螺旋槽开槽位置及空化压力对液膜中空化发生的影响。结果表明:较小膜厚工况易促生空穴,而较大膜厚易削弱空穴,且随着膜厚增大,表面粗糙度的影响降低甚至被忽略;当密封为上游泵送型时,空穴区周向宽度明显大于下游泵送型,而螺旋槽位置对空化的影响与螺旋槽功用密切相关;选取较小空化压力使空穴缩减,而较大者反之,且后者对提升液膜承载有利。  相似文献   

12.
液膜中空化的发生直接影响着密封流体动压润滑性能,基于质量守恒的JFO边界条件,建立考虑表面粗糙度的螺旋槽液膜密封物理模型,经坐标变换将不规则物理域转换成规则计算域,采用有限控制体积法离散控制方程并求解,分析了膜厚、表面粗糙度、螺旋槽功用(上游泵送和下游泵送)、螺旋槽开槽位置及空化压力对液膜中空化发生的影响。结果表明:较小膜厚工况易促生空穴,而较大膜厚易削弱空穴,且随着膜厚增大,表面粗糙度的影响降低甚至被忽略;当密封为上游泵送型时,空穴区周向宽度明显大于下游泵送型,而螺旋槽位置对空化的影响与螺旋槽功用密切相关;选取较小空化压力使空穴缩减,而较大者反之,且后者对提升液膜承载有利。  相似文献   

13.
为了探究液膜相变现象对螺旋槽液膜密封性能的影响。基于质量守恒定律,以赫兹方程推导质量源项并建立非接触式液膜密封相变模型。使用有限体积法对控制方程进行离散,分析了液膜相变现象对非接触式机械密封性能的影响。结果表明:相变现象对密封性能的影响与密封功用密切相关,且动压槽开槽位置及槽内相态分布对密封性能与端面压力分布影响显著;液膜发生相变后,下游泵送型密封开启力增大且泄漏量减小;上游泵送型内槽式密封开启力先增大后减小,泄漏量先减小后增大再减小,外槽式密封开启力呈线性增大,泄漏量先减小后增大;相变发生在槽区时,会导致动压效应明显减弱,对端面压力分布影响较大。  相似文献   

14.
相变对螺旋槽液膜密封性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了探究液膜相变现象对螺旋槽液膜密封性能的影响。基于质量守恒定律,以赫兹方程推导质量源项并建立非接触式液膜密封相变模型。使用有限体积法对控制方程进行离散,分析了液膜相变现象对非接触式机械密封性能的影响。结果表明:相变现象对密封性能的影响与密封功用密切相关,且动压槽开槽位置及槽内相态分布对密封性能与端面压力分布影响显著;液膜发生相变后,下游泵送型密封开启力增大且泄漏量减小;上游泵送型内槽式密封开启力先增大后减小,泄漏量先减小后增大再减小,外槽式密封开启力呈线性增大,泄漏量先减小后增大;相变发生在槽区时,会导致动压效应明显减弱,对端面压力分布影响较大。  相似文献   

15.
程香平  孟祥铠  彭旭东 《化工学报》2014,65(8):3089-3097
针对等深大菱形孔端面液体润滑机械密封,采用有限差分法求解等温及层流不可压缩二维Reynolds方程,获得液膜压力场。利用商用有限元软件计算密封环三维固体变形,对不同操作工况条件下和不同结构的密封环的力变形、摩擦扭矩、液膜刚度及泄漏率等性能参数进行了计算。结果表明:大菱形孔流体动压型机械密封端面产生周向波度和径向锥度变形;改变工况条件可使密封面形成收敛和发散两种不同的变形,密封性能参数因此产生显著变化;当面积比B=0.65~0.75时,大菱形孔端面密封可获得较好的密封性能;辅助密封圈O形圈位置l对径向锥度变形具有很大影响,l优选值范围为2.4~4.0 mm。  相似文献   

16.
针对等深大菱形孔端面液体润滑机械密封,采用有限差分法求解等温及层流不可压缩二维Reynolds方程,获得液膜压力场。利用商用有限元软件计算密封环三维固体变形,对不同操作工况条件下和不同结构的密封环的力变形、摩擦扭矩、液膜刚度及泄漏率等性能参数进行了计算。结果表明:大菱形孔流体动压型机械密封端面产生周向波度和径向锥度变形;改变工况条件可使密封面形成收敛和发散两种不同的变形,密封性能参数因此产生显著变化;当面积比B=0.65~0.75时,大菱形孔端面密封可获得较好的密封性能;辅助密封圈O形圈位置l对径向锥度变形具有很大影响,l优选值范围为2.4~4.0 mm。  相似文献   

17.
液膜相变现象不仅改变了端面润滑状态,而且对密封性能及稳定性有着显著的影响。使用有限体积法对控制方程进行离散,研究了螺旋槽结构参数与密封工况参数对密封性能及液膜相变率的影响。结果表明:开启力与泄漏量随螺旋角、槽数、槽深、压差、转速的增大而增大,随槽面宽比、槽台宽比的增大先增大后减小,分别在槽面宽比ζ=0.5与槽台宽比φ=0.7时取到最大值。相变率随螺旋角、转速的增大而增大,随槽数、槽深、压差、槽台宽比的增大而减小,随槽面宽比的增大先减小后增大,在槽面宽比ζ=0.8时取最小值。通过对各参数合理地选择与组合,可以有效地抑制相变进程,进而在保证密封运行稳定的同时利用相变现象提高密封性能。  相似文献   

18.
液膜中空化的产生会影响密封润滑性能。基于质量守恒的JFO空化边界条件,建立螺旋槽液膜密封数学模型,采用流线迎风有限元法求解Reynolds控制方程,获得端面空化分布,并通过可视化试验进行了验证。以空化临界转速和临界压力为表征,分析了螺旋槽结构参数对空化特性的影响。结果表明:螺旋槽内空化区域呈机翼截面型,且随着转速的增加而变大,随着内径压力的增加而减小,空化周向最大长度位于近槽根处;空化临界转速随着槽数、槽深的增加而增加,随着螺旋角、槽长坝长比、槽台宽比的增加而减小;空化临界压力随各结构参数的变化趋势与空化临界转速相反。通过对各结构参数的合理选择,可实现对空化的有效控制。  相似文献   

19.
液膜中空化的产生会影响密封润滑性能。基于质量守恒的JFO空化边界条件,建立螺旋槽液膜密封数学模型,采用流线迎风有限元法求解Reynolds控制方程,获得端面空化分布,并通过可视化试验进行了验证。以空化临界转速和临界压力为表征,分析了螺旋槽结构参数对空化特性的影响。结果表明:螺旋槽内空化区域呈机翼截面型,且随着转速的增加而变大,随着内径压力的增加而减小,空化周向最大长度位于近槽根处;空化临界转速随着槽数、槽深的增加而增加,随着螺旋角、槽长坝长比、槽台宽比的增加而减小;空化临界压力随各结构参数的变化趋势与空化临界转速相反。通过对各结构参数的合理选择,可实现对空化的有效控制。  相似文献   

20.
基于相变效应的内压型螺旋槽液膜密封性能分析   总被引:1,自引:0,他引:1       下载免费PDF全文
液膜相变现象不仅改变了端面润滑状态,而且对密封性能及稳定性有着显著的影响。使用有限体积法对控制方程进行离散,研究了螺旋槽结构参数与密封工况参数对密封性能及液膜相变率的影响。结果表明:开启力与泄漏量随螺旋角、槽数、槽深、压差、转速的增大而增大,随槽面宽比、槽台宽比的增大先增大后减小,分别在槽面宽比ζ=0.5与槽台宽比φ=0.7时取到最大值。相变率随螺旋角、转速的增大而增大,随槽数、槽深、压差、槽台宽比的增大而减小,随槽面宽比的增大先减小后增大,在槽面宽比ζ=0.8时取最小值。通过对各参数合理地选择与组合,可以有效地抑制相变进程,进而在保证密封运行稳定的同时利用相变现象提高密封性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号