首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The velocity and thermal behavior (temperature, enthalpy, solid fraction) of atomized droplets in a metal spray play the most important role in the spray forming process. These properties mainly determine the materials yield and the final product quality (e.g., porosity, microstructure) of the as-sprayed materials. Changing the gas temperature in the atomization process directly influences these droplet properties in the spray. To understand the droplet behavior in the spray at various atomization gas temperatures (i.e., room temperature RT 293 K, 573 K, 873 K), numerical simulations using computational fluid dynamics (CFD) techniques have been performed and validated by experiments. A series of atomization runs (powder production and spray-forming with AISI 52100 steel) has been conducted at different atomization gas temperatures and pressures with a close-coupled atomizer (CCA). The in-situ temperature detection of the deposit surface (pyrometer) and in the substrate (thermocouples) has been performed to observe the effect of particle properties on the deposit. The result shows that hot gas atomization provides smaller droplets with faster velocity in the spray, affecting the droplet impact and deformation time in the deposition zone. A higher solid fraction of the smaller droplets by hot gas atomization also reduces the deposit surface temperature. Increasing the substrate diameter further decreases the deposit surface temperature without compromising the deposit quality (i.e., porosity) and also refines the grain size. Pre-heating of the substrate up to 573 K results in lower porosity in the vicinity of the substrate.  相似文献   

2.
Abstract

Mg alloy AZ31 was spray-formed using an indigenously developed spray atomisation and deposition unit under protective atmosphere and various processing parameters were optimised. The microstructural features of the bell shaped AZ31 spray-formed deposit were characterised using optical microscope, scanning electron microscope/energy dispersive spectrometer, X-ray diffraction and high resolution transmission electron microscope. It was observed that the microstructural features are critically dependent on location in the spray-formed deposits. Under optimised processing conditions, the central region of the bell shaped deposit exhibited minimal porosity and a uniform fine grained equiaxed microstructure with fine Mg17Al12 intermetallics preferably located at the grain boundaries. However, the peripheral regions of the spray-formed deposit indicate higher porosity with distinct microstructural characteristics different from those in the central region. These microstructural features, observed at different locations in the spray-formed deposit, have been analysed and their evolution is discussed in the light of variations in thermal and solidification conditions of the droplets in flight, during impingement as well as those of the deposition surface.  相似文献   

3.
Bulk amorphous and nano‐crystalline metallic materials have been observed to possess excellent mechanical and physical properties. The conventional process routes, to synthesize such materials, are restricted by their ability to achieve rapid solidification, which limits the dimensions of the materials produced. In the last 10–12 years, spray forming has been employed to avoid these limitations by using its capability of layer by layer deposition of undercooled droplets. The current literature indicates that the opportunities provided by this process can be effectively utilized to produce bulk materials in a single step. In this paper, an attempt has been made to bring out the developments in the synthesis of bulk amorphous and/or nano‐crystalline materials by spray forming. The effect of process parameters, droplet size distribution in the atomized spray, the thermal conditions of droplets prior to deposition and the deposition surface conditions have been discussed. It has been demonstrate that a layer by layer deposition of undercooled droplets of glass forming alloys on a relatively cold deposition surface is the suitable condition to achieve bulk amorphous/nano‐crystalline materials.  相似文献   

4.
The relationships between processing parameters, deposit microstructures, and deposit properties are not well understood, mainly due, on the one hand, to the numerous parameters governing the thermal spray process and, on the other, to the random mode of deposition of the material (for example, individual impacts of molten particles). The interactions are mainly related to the impact, spreading, and solidification of the material droplets onto the substrate, or previously deposited layers. A methodology was implemented to quantify individual splat morphologies using size and shape factors referring to an equivalent diameter, an elongation factor, and a degree of splashing, and also three-dimensional profilometry and stereology. This approach is mainly based on the use of an image analysis system and statistical tools. A few examples of the potential of this method are given. Such a lowcost and low-time-consuming protocol could be easily implemented for an optimization purpose.  相似文献   

5.
Centrifugal spray deposition, the atomisation of a liquid metal by centrifugal force and the subsequent collection of the atomised droplets on a reciprocating collector, is currently being developed for the production of high performance Fe, Ni and Ti based ring-shaped components for use in aerospace and gas turbine containment applications. The process combines the technical, economic and metallurgical benefits of more conventional gas-assisted spray forming techniques with the advantage that it can easily operate under vacuum, reducing potential problems from gas entrapment and thermally induced porosity. In order to aid process development, understanding and optimisation, a transient numerical heat and mass transfer model has been developed that is capable of predicting the evolution of the deposit temperature distribution during spraying. The model has been validated experimentally using thermocouple measurements obtained during the production of 35 kg (340 mm diameter) IN718 rings and qualitative correlations have been observed between the predicted data and the type/distribution of porosity and second phase precipitates in the deposit. The model is currently being further developed and integrated with droplet size distribution and cooling models to provide a better insight into the physics and operational parameters which control deposit shape and microstructure.  相似文献   

6.
多层喷射共沉积制备 SiCP/Al-8.5Fe-1.3V-1.7Si复合材料   总被引:1,自引:0,他引:1       下载免费PDF全文
采用多层喷射沉积工艺制备SiCP/Al-8.5Fe-1.3V-1.7Si复合材料, 研究了雾化及沉积工艺参数对沉积坯状态及SiC颗粒捕获的影响。结果表明, 液流直径大、雾化气体压力小、喷射高度小会导致沉积坯组织恶化, 反之则造成收得率低、致密度低。雾化器扫描不均匀则会造成沉积坯形状不均匀, 而且会由于热量集中导致显微组织恶化。SiC颗粒输送压力的提高有利于SiC颗粒的捕获以及颗粒的均匀分布。多层喷射沉积制备SiCP/Al-8.5Fe-1.3V-1.7Si的优化工艺参数为: 液流直径3.6 mm, 雾化气体压力0.8 MPa, 喷射高度200 mm, SiC 颗粒输送压力0.5 MPa。 沉积坯存在两种SiC-Al界面: 晶态Si界面层与非晶态SiO2界面层。  相似文献   

7.
A critical part of the billet spray-forming process is the successive intermittent deposition of thin layers of semi-solid aluminium alloy at different points on the top surface of the billet. Each thin layer is made up of a large number of impacted semi-solid spray droplets. As successive layers of alloy are deposited significant re-melting and re-freezing of underlying layers can occur. If the layers become too dry, high porosity will result; if they are too wet, fluid dynamic surface instabilities are possible. In extreme cases no billet will form. The process is essentially incremental, so that heat fluxes within the deposit very close to the top surface play a major role in determining the final deposit microstructure.In this paper transient heat transfer and solidification processes in the billet are analysed. First, some general features of billet heat transfer are discussed. The focus then narrows onto a thin layer of the deposit, lying very close to the billet surface. A boundary layer approximation is derived and computational results from this approximation are used to answer a number of questions of high practical value.  相似文献   

8.
Scientists and engineers are currently moving into a new era to develop precise and intelligent mini-structures and microsystems. The study of mini-structures and microsystems is a rapidly growing area of research with a great potential to accomplish useful tasks in numerous applications. In this paper, a new fabrication technology for microstructures based on the chemical liquid deposition (CLD) is presented. This technology is based on the following principles: micro-droplets of a cold (room temperature) solution or liquid reactant are sprayed from a nozzle and make contact with a hot substrate, the droplets will evaporate, decompose, or react, and then the reacted solid products will deposit on the substrate. By controlling the motion of the nozzle and the spray time, a desired 3D microstructure of the deposited material can be formed through a layer-by-layer scanning technique. The working principle, available materials as well as the process control and modeling is discussed and some preliminary results are presented.  相似文献   

9.
The Discrete Element Method (DEM) is commonly used for modeling the flow of particulate materials. Unfortunately, such detailed simulations are computationally very demanding, restricting its use for industrially-scaled processes. The number of particles in a simulation can be reduced by introducing parcels (i.e., “coarse graining”), which – in essence – relies on the increase of the particle diameter for interaction calculations. However, sophisticated models are necessary to preserve the original behavior of the material when using such an approach. Our present contribution extends available coarse-graining concepts by introducing models for (i) particle–fluid mass transfer and (ii) the deposition rate of spray droplets on particles. Our mass transfer model is based on an existing model for heat transfer. For the spray deposition model, we introduce an effective particle diameter to compute the correct amount of droplets that impact particles. We show that these models can be used with confidence up to a coarse-graining level of 5, which we demonstrate for a simple-shaped fluidized bed. The models proposed by us are critical for detailed simulations of spray coating processes since they enable precise particle-droplet-air interaction modeling at low computational cost.  相似文献   

10.
杨理京  李争显  黄春良  王培  姚建华 《材料导报》2018,32(3):412-417, 426
冷喷涂是一种新型的低温固态涂层制备技术,在制备温度敏感、相变敏感、氧化敏感材料涂层方面表现出突出的优势。但单纯冷喷涂技术无法沉积高硬度材料,这极大地限制了冷喷涂的应用范围,为了解决该问题,激光技术被引入冷喷涂沉积过程中同步软化喷涂颗粒与基板,这不仅能使高硬度材料实现有效沉积,还能提高冷喷涂涂层的沉积效率、致密度和结合强度等,拓宽冷喷涂沉积材料的选择范围。阐述了激光辅助冷喷涂技术的原理、特点和优势,综述了该技术在沉积制备高硬度金属及金属基耐磨复合涂层的国内外研究现状。  相似文献   

11.
Electrospraying utilises electrical forces for liquid atomisation. Droplets obtained by this method are highly charged to a fraction of the Rayleigh limit. The advantage of electrospraying is that the droplets can be extremely small, down to the order of 10’s nanometres, and the charge and size of the droplets can be controlled to some extent be electrical means. Motion of the charged droplets can be controlled by electric field. The deposition efficiency of the charged spray on an object is usually higher than that for uncharged droplets. Electrospray is, or potentially can be applied to many processes in industry and in scientific instruments manufacturing. The paper reviews electrospray methods and devices, including liquid metal ion sources, used for thin film deposition. This technique is applied in modern material technologies, microelectronics, micromachining, and nanotechnology.  相似文献   

12.
铝铜合金雾化沉积快速凝固过程的传热计算   总被引:1,自引:0,他引:1  
建立了雾化沉积快速凝固过程热量传输的理论模型,对Al-4.5%Cu合金在雾化沉积过程的颗粒运动动力学以及颗粒与沉积层的温度,固相分数和冷却速度等凝固参量的变化规律进行了数值计算。  相似文献   

13.
电弧喷涂快速成形技术研究现状   总被引:3,自引:0,他引:3  
电弧喷涂成形是新近发展起来的一项重要金属快速成形技术。对比分析电弧喷涂快速成形技术与近终喷射成形和等离子喷涂成形技术之间的差异与特点,综述电弧喷涂在模具快速制造领域的研究应用现状,并讨论了电弧喷涂成形材料,以及喷涂成形雾化与沉积工艺过程中的传热传质、残余应力和氧化行为等关键性问题。最后,展望了电弧喷涂厚成形技术的重点研究方向与解决途径。  相似文献   

14.
Marble dust is a hazardous construction/industrial waste generated during the extraction, cutting and polishing of marble-producing rocks. The present work explores the potential of marble dust to be used as a coating material on metal substrates. For this, the high-velocity oxy-fuel (HVOF) spraying route is adopted to deposit marble dust coatings on four different metallic substrates: mild steel, inconel, aluminum, and copper. Liquefied petroleum gas is used as the fuel and nitrogen as the carrier gas while the coating deposition is performed by varying the spray distance over a range from 50 mm to 250 mm. The coating microstructure is studied using a scanning electron microscope (SEM) and the developed phases are identified using an x-ray diffractometer. The developed coatings are characterized in terms of deposition efficiency, coating thickness and adhesion strength. It is found that the coatings exhibit fairly good interfacial adhesion and thickness values that varied quite significantly with the spray distance. Maximum deposition efficiency of about 68 % is obtained for the copper substrate when the deposition is performed at a spray distance of 100 mm. This experimental investigation thus shows that despite being a waste, marble dust is eminently coatable on several metallic substrates.  相似文献   

15.
In this study, nickel aluminide intermetallics were synthesized using the spray atomization and deposition technique. Microstructure characterization studies were performed to provide an understanding of the intrinsic influence of spray processing parameters on the microstructure of the intermetallic. Numerical simulation was carried out to provide an understanding of the influence of deformation, heat transfer kinetics and thermal history of the droplets on the thermal profile, distribution and solidification. The microstructure of the intermetallic is discussed in the light of results obtained from experimental observations and numerical simulation. Ambient-temperature tensile tests reveal the intermetallics to have a high strength and acceptable ductility. The tensile fracture behaviour of the polycrystalline intermetallic is presented and discussed in the light of processing and thermal conditions during spray deposition and intrinsic microstructural effects.  相似文献   

16.
Dense samarium doped ceria (SDC) thin films are deposited using electrostatic spray deposition (ESD) technique. The influences of nozzle shape on the distribution of liquid jet at the nozzle tip and the morphology of the deposited SDC films are elucidated. Geometries of three nozzles employed are flat, sawtooth and wedge tips. From the observation of jet formation, the nozzle in flat shape gives the highest distribution of emitted droplets. The deposited films are characterized using a combination of XRD, SEM and AFM techniques. XRD results reveal that the single-phase fluorite structure forms at a relatively low deposition temperature of 400 °C. The flat spray tip provides the most uniform and smooth thin films, and also presents the lowest agglomeration of particles on thin-film surface.  相似文献   

17.
Porosity is one of the most important quality criteria of spray‐formed materials in the as‐sprayed condition. Typically, spray‐formed sheets have a porous rim close to the substrate and depending on the spray conditions cold or hot porosity may also be present in the core of the deposit. This porosity has to be removed or minimized to make further processing steps such as rolling, forging or extrusion possible. In this paper, the influence of both substrate temperature and deposit surface temperature on porosity in spray‐formed sheets is studied. For this purpose spray forming experiments (sheet size 1000 mm × 250 mm) were carried out using three different materials: aluminium‐bronze, tin‐bronze and a nitriding steel. For the copper‐base alloys preheated steel‐substrates with different temperatures were moved through a scanning spray cone. In the case of steel a ceramic substrate at room temperature was used. In addition to the variation of the substrate temperature, the gas to metal mass flow ratio (GMR) was varied to achieve different deposit surface temperatures. During the run the surface temperature in the deposition zone was measured using a scanning, multi‐wavelength pyrometer. Samples of the deposits were polished and rasterized by light microscopy. The local porosity was characterized by digital image analysis. The influence of the substrate temperature and the GMR on the porosity in the vicinity of the substrate is evaluated and discussed in detail. The impact of the deposit surface temperature on the porosity was analyzed and is discussed as well. It was found that the deposit surface temperature has a strong impact on porosity for spray‐formed sheets. Finally, experimental results were used to develop a new approach to predict the porosity in spray‐formed sheets. The results clearly show the dependence on material properties. This approach can be used to identify process parameters to generate high density sheets in the future.  相似文献   

18.
Nozzle arrangement in the nozzle spray system has a significant impact on the gas-droplet flow characteristics and the temperature distribution within the circulating fluidized bed flue gas desulphurization (CFB-FGD) tower, which is critical to the SO2 removal efficiency. The effects of spray direction, nozzle number and nozzle spray angle on gas-droplet distribution and temperature distribution inside the FGD tower are investigated with numerical simulation based on a Eulerian-Lagrangian mathematical model. An optimal nozzle arrangement scheme is proposed to improve the contact between gas and water droplets and the flue gas temperature distribution. Results show that upward spray direction is beneficial to the interaction between water droplets, improving gas-droplet flow characteristics and spray evaporation process, and water droplets number trapped by tower wall could be reduced in the water droplets evaporation. With the increase in nozzle number, it is conducive to the contact between flue gas and water droplets to increase the evaporation efficiency of water droplets, as well as the uniformity of temperature distribution inside the tower. With nozzle spray angle increases from 30° to 120°, flue gas velocity decreases, water droplets number trapped by the tower wall increases. The temperature distribution at different cross-section is the most uniform when the nozzle spray angle is 60°.  相似文献   

19.
本文主要研究了大尺寸喷射成形高合金化材料高温合金沉积坯内部疏松成因及其改善工艺。研究认为,高温合金沉积坯中最后凝固部位液相金属补缩不足和断裂应变低是产生疏松的必要条件,而沉积坯的局部收缩变形产生的热应力是造成疏松的重要原因。通过有限元计算,提出一种热控喷射成形工艺,并得到试验验证。该工艺有效减少了坯体内部的疏松等冶金缺陷,改善了沉积坯的质量。  相似文献   

20.
The motion of large two-component volatile aerosol particles in a three-component gas mixture containing droplets is considered, which is caused by optical radiation. An expression is derived for the rate of deposition of aerosol particles onto the droplet surface. Analysis is made of the conditions in which the aerosol particles either deposit on the droplet surface or scatter. Numerical estimates are given for antimony-bismuth aerosol particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号