首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
采用原位化学气相沉积、短时球磨和填加造孔剂法相结合的工艺制备了碳纳米管(CNTs)/Al复合泡沫,研究了其在压缩-压缩循环载荷下的力学性能及失效机制。结果表明,CNTs/Al复合泡沫的应变-循环次数曲线经历线弹性、应变硬化及应变快速增长三个阶段。不同于泡沫铝的逐层坍塌变形失效模式,CNTs/Al复合泡沫疲劳失效的主要原因是大量剪切变形带的形成,试样出现快速的塑性变形。此外,CNTs含量为2.5wt%、孔隙率为60%的复合泡沫试样的疲劳强度相比于泡沫铝提高了92%。CNTs的均匀分布及增强相与基体材料之间良好的界面结合性保证了疲劳载荷能够以剪切力的形式从基体传递到CNTs上,使其充分发挥自身高强度、高韧性的特点,进而提高了疲劳性能。   相似文献   

2.
Uniaxial tensile tests were performed on plasma spray formed (PSF) Al–Si alloy reinforced with multiwalled carbon nanotubes (MWCNTs). The addition of CNTs leads to 78% increase in the elastic modulus of the composite. There was a marginal increase in the tensile strength of CNT reinforced composite with degradation in strain to failure by 46%. The computed critical pullout length of CNTs ranges from 2.1 to 19.7 μm which is higher than the experimental length of CNT, leading to relatively poor load transfer and low tensile strength of PSF nanocomposites. Fracture surface validates that tensile fracture is governed strongly by the constitutive hierarchical microstructure of the plasma sprayed Al–CNT nanocomposite. The fracture path in Al–CNT nanocomposite occurs in Al–Si matrix adjacent to SiC layer on CNT surface.  相似文献   

3.
针对金属基复合材料,添加合金元素是提升其综合性能的有效途径。本文通过高能球磨和填加造孔剂法,制备了添加Si元素的碳纳米管(CNTs)增强铝基(CNTs/Al-Si)复合泡沫,通过准静态压缩实验测试其压缩性能和吸能性能,进一步研究烧结温度和不同Si元素含量对CNTs/Al-Si复合泡沫微观组织、压缩性能和吸能性能的影响,并结合压缩断口形貌分析其断裂失效机制。结果表明:随着烧结温度的升高,CNTs/Al-Si复合泡沫的致密度和结合性提高,当烧结温度为600℃、Si质量分数为7wt%时,CNTs/Al-Si复合泡沫的屈服强度、平台应力和吸能性能,较烧结温度为550℃时分别提高了98.4%、167.7%和166.4%;Si元素的添加可以在球磨过程中细化复合粉末颗粒,经合金化后的CNTs/Al-Si复合泡沫强度和塑性均有所改善。与CNTs/Al复合泡沫相比,Si质量分数为7wt%的CNTs/Al-Si复合泡沫屈服强度和平台应力分别提高了58.5%和117.8%,吸能性能明显提高。   相似文献   

4.
In this study the compressive cyclic behavior of bovine cancellous bone and three open‐cell metallic foams including AlSi7Mg foams (30 and 45 ppi) and CuSn12Ni2 foam (30 ppi) has been investigated. Multi‐step fatigue tests are carried out to study the deformation behavior under increasing compressive cyclic stresses. Short multi‐step tests, with steps of 300–500 cycles, are used to identify the cyclic yield stress (σcy) and the stress at failure (σfail). The residual strain accumulation, or cyclic creep, is observed during these tests. Long multi‐step tests, with 5000 cycles at selected stress ranges (0.4σcy, 0.6σcy, 0.8σcy, and σcy), are also carried out to study further the compressive fatigue behavior of the materials. Scanning electron microscopy (SEM) has been used to characterize the microstructure of the foams and the bone prior to and post mechanical testing. Particular attention is paid to the role of cyclic creep and buckling in the failure processes. The results show that residual strain accumulation seems to be the predominant driving force leading to failure of foams and bones. Although foams and bone fail by the same mechanism of cyclic creep, the deformation behavior at the transient region of each step is different for both materials. The maximum strain εmax of foams decrease suddenly during the change of each step. This behavior may be explained by the rapidly developing microdamage in the cell struts that occur at the transient region of each step. Bones show more gradual decrease of εmax, where microdamage may be accumulated progressively during the fatigue test.  相似文献   

5.
因碳纳米管(CNTs)具有优异的性能,被认为是金属基复合材料理想的增强体,因此如何制备得到CNTs增强体均匀分散的金属基复合材料一直是本领域的研究热点。本文通过原位化学气相沉积(CVD)、短时球磨和填加造孔剂的工艺成功制备了CNTs增强的泡沫铝基复合材料,着重研究了球磨过程对复合泡沫铝的微观形貌、压缩性能和吸能性能的影响规律。结果表明,随着球磨时间的延长,CNTs的分散性提高并逐步嵌入铝基体中,使复合泡沫铝的组织均匀性得到改善。相对于未球磨的含CNTs 3.0wt%的复合泡沫材料,当球磨时间增加至90 min时,复合泡沫铝的孔壁硬度、屈服强度和吸能能力分别提高了67%、126%和343%。  相似文献   

6.
In this paper, spark plasma sintering (SPS) of multi‐walled carbon nanotube (CNT) reinforced aluminum matrix composites is reported. Ball milling of the Al‐CNT mixture with polyacrylic acid (PAA) dispersion agent followed by SPS resulted in uniform dispersion of CNTs in dense composite compacts. Significant improvement in microhardness, nanohardness, and compressive yield strength was observed with 2 wt% CNT reinforcement in aluminum matrix composites. The Al‐CNT composites further exhibited improved wear resistance and lower friction coefficient due to strengthening and self‐lubricating effects of CNTs.  相似文献   

7.
Although metal foams are a relatively new material, substantial knowledge has been accumulated about their mechanical properties and behaviour under monotonic loads and tension–tension and compression–compression cyclic loads. However, there are very few reports of the behaviour of metal foams under tension–compression‐reversed loading. In this paper, we examine some of the rare published data regarding the tension–compression cyclic response of metal foams, develop a statistical model of the fatigue lifetime and propose two damage accumulation models for aluminium‐closed cell foams subjected to a fully reversed cyclic loading. In developing these models a fatigue analysis and a failure criterion for the material are needed; the fatigue models considered are the Coffin–Manson and the statistical Weibull model, and the failure criterion used is the one described by Ingraham et al. (Ingraham, M.D., DeMaria, C.J., Issen, K.A. and Morrison, D.J.L. (2009). Mater. Sci. Eng. A. 504:150–156). The models developed are compared with the experimental published data by Ingraham et al. (Ingraham, M.D., DeMaria, C.J., Issen, K.A. and Morrison, D.J.L. (2009). Mater. Sci. Eng. A. 504:150–156) and a final analysis was performed to determine whether it is preferable to use the total or plastic strain amplitude for the fatigue analysis.  相似文献   

8.
We have increased the tensile strength without compromising the elongation of aluminum (Al)–carbon nanotube (CNT) composite by a combination of spark plasma sintering followed by hot-extrusion processes. From the microstructural viewpoint, the average thickness of the boundary layer with relatively low CNT incorporation has been observed by optical, field-emission scanning electron, and high-resolution transmission electron microscopies. Significantly, the Al–CNT composite showed no decrease in elongation despite highly enhanced tensile strength compared to that of pure Al. We believe that the presence of CNTs in the boundary layer affects the mechanical properties, which leads to well-aligned CNTs in the extrusion direction as well as effective stress transfer between the Al matrix and the CNTs due to the generation of aluminum carbide.  相似文献   

9.
We investigated the changes in the first- and second-order Raman spectra of suspended crossed ultralong carbon nanotube (CNT) junctions using different laser excitation energies. The CNT junctions were in situ fabricated by growing CNTs in two perpendicular directions using chemical vapor deposition (CVD) technique. Raman spectra substantiated the structural deformation by the compression between CNTs in the junction. IV curves of crossed CNT junctions showed the linear behavior. These crossed CNT–CNT junctions have higher current values than individual CNTs. The coexisting suspended and unsuspended CNTs on the substrate showed higher sensitivity to infrared (IR) radiation but longer response time than those with only suspended ones or CNT junctions.  相似文献   

10.
In this study, object oriented finite element method (OOF) has been utilized to compute the thermal conductivity of plasma sprayed Al-12 wt.% Si containing 10 wt.% multiwall carbon nanotubes (CNTs). The computations have been made at micro- and macro-length scales which highlight the effect of CNT dispersion on thermal conductivity. Experimentally measured values at 50 °C indicate that CNT addition reduced the thermal conductivity of Al–Si matrix from 73 W m−1 K−1 to 25.4 W m−1 K−1 which is attributed to the presence of CNT clusters. OOF calculations at micro-length scale predicted an 81% increase in the conductivity of Al–Si matrix due to presence of well dispersed CNTs inside the matrix. At larger lengths scale, the decrease in the overall conductivity is related to the extremely low conductivity of CNT clusters. Thermal conductivity of CNT clusters could be up to three orders of magnitude lower than individual CNTs. OOF computed values match well with experimental results. OOF compute thermal conductivity of Al–CNT composite is also compared with theoretical two-phase models for CNT-composites at different length scales.  相似文献   

11.
目的 研究双模铝基复合材料连续区(Continuous Region,CR)和非连续区(Discontinuous Region,DR)力学性能对材料整体力学性能的影响规律,以深入了解双模铝基复合材料的强韧化机理。方法 基于Abaqus模拟软件,以双模CNT/Al为研究对象,建立了构型尺度的代表性体积单元(RVE)模型,采用GTN(Gurson-Tvergaard-Needleman)模型来描述双模CNT/Al中CR和DR的变形力学行为,通过定义力学性能参数来简化描述CR和DR复杂的力学性能。针对双模CNT/Al的CR和DR,分别设定力学性能参数HC和HD,并进行一系列的拉伸载荷模拟,研究HC和HD对双模复合材料整体力学性能的影响规律。通过与真实双模CNT/Al的力学性能进行对比,得到双模CNT/Al中CR和DR力学性能与均匀材料力学性能的差异,最后对双模CNT/Al在变形过程中的应力分布情况和断裂后的形貌进行分析。结果 当HC小于4时,双模CNT/Al的抗拉强度随HD的增大而下降;当HC大于5时,双模CNT/Al的抗拉强度随HD的增大而增大;双模CNT/Al的屈服强度随着HD和HC的增大而增大,延伸率随着HD和HC的增大而降低。当HD或HC一定时,在HC=HD时,模型材料的延伸率最大。典型双模CNT/Al由“粗晶铝合金+CNT/超细晶Al复合材料”构成,与均匀结构的粗晶铝合金相比,其构型中粗晶铝合金的强度显著提升、塑韧性显著下降;与均匀结构的CNT/超细晶Al相比,其构型中的CNT/超细晶Al复合材料的强度小幅降低、塑韧性小幅提升。当HD大于HC时,裂纹优先在DR产生;当HD小于HC时,裂纹优先在CR区产生;当HD和HC接近时,裂纹产生的区域更加分散。结论 建立了一种双模铝基复合材料的有限元模型,从数值上说明了双模CNT/Al复合材料微区与均匀材料的力学性能存在显著差异,为双模铝基复合材料的设计提供了参考。  相似文献   

12.
Fatigue life of fibrous metal matrix composites is limited by the distribution of fibre strengths, the fibre‐matrix interfacial strength, and the fatigue resistance of the matrix. The aim of this work is to provide fatigue results for a beta titanium alloy over a range of temperatures and stresses that can be used as input for predicting fatigue life of a titanium matrix composite. Stress controlled tests having fatigue ratios between ?1 and ?0.2 were conducted on a limited number of samples machined from unreinforced laminated Ti‐15Mo‐3Al‐2.7Nb‐0.2Si (TIMETAL®21S) sheets to represent as closely as possible the in situ matrix material. Stress control was used to enable quantification of strain ratcheting for tensile mean stresses and a fast loading rate was used to minimize time‐dependent (creep) deformation. Stress amplitude‐life data at 20, 482 and 648 °C for fully reversed loading are well fit by a power law. Normalizing the stress amplitude with respect to the power law coefficient appears to account for the temperature dependence of the S–N curves. As the tests had large strains and lives were in the low‐cycle fatigue range, strain range at the half‐life was also correlated to life. For tensile mean stress cycling at 482 and 648 °C, the rate of strain ratcheting per cycle increased to failure; shakedown was not observed.  相似文献   

13.
Glass cenospheres were used as space holders for making aluminum matrix syntactic foams by pressure infiltration technique. The mechanical properties and failure behavior of cenospheres/Al syntactic foams with pure Al and Al–Mg alloys were investigated in the present work. The failure behavior of cenospheres in two syntactic foams was similar. However, the mechanical behavior of these two syntactic foams was different. Under compression process, the cenospheres/pure Al showed discontinuous shear band and drum shape, while cenospheres/Al–Mg exhibited continuous shear band and was divided by main shear zone. At the tensile state, the cenospheres in pure Al matrix syntactic foam debonded from the matrix, while the cenospheres in Al–Mg matrix syntactic foam was well-bonded and appeared to lamellar tearing. It is suggested that the difference of mechanical deformation behavior could be attributed to the matrix ductility and the forming of interfacial reaction product MgAl2O4 coatings.  相似文献   

14.
Jinzhi Liao  Ming-Jen Tan 《Materials Letters》2011,65(17-18):2742-2744
In carbon nanotube (CNT) reinforced metal matrix composites (MMCs), the good dispersion of CNTs in the matrix as well as the processing problems are the major challenges inhibiting the development of these composites. In this study, well-dispersed CNTs reinforced aluminum (Al) matrix nanocomposite was fabricated by a novel Spread–Dispersion (SD) method. Specimens with ultra-fine grain size down to 20 nm were obtained. The tensile strength of the CNT nanocomposite was 66% greater than the base matrix with a minor decrease in ductility. Such enhancement was analyzed on the basis of segregation and uniform distribution of clustered CNTs, disappearance of the CNT-free zones, eliminated porosity, stronger Al/CNT bonding and the retention of CNT graphitic structure.  相似文献   

15.
通过填加造孔剂方法制备了碳纳米管(CNTs)增强铝基复合泡沫,采用热机械分析仪研究了测试温度、频率、外加振幅、泡沫的孔隙率和CNTs含量对其阻尼性能的影响,并分析了相关阻尼机制。结果表明:复合泡沫铝的阻尼性能随孔隙率和振幅的增大而提高,随着频率的增加而下降。在环境测试温度25~200℃范围内,复合泡沫的损耗因子变化较小;当温度高于200℃后,损耗因子随温度升高有明显的提高。CNTs的加入可以显著提高泡沫铝的阻尼性能,常温下3.0% CNTs增强的铝基复合泡沫的损耗因子达0.27,为泡沫铝的3.71倍。复合泡沫的阻尼机制主要为位错阻尼、晶界阻尼、孔隙阻尼、CNTs的本征阻尼和CNTs-Al间界面阻尼,其中本征和界面阻尼发挥了重要的增强作用。   相似文献   

16.
We show that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix of glass–fiber composites reduces cyclic delamination crack propagation rates significantly. In addition, both critical and sub-critical inter-laminar fracture toughness values are increased. These results corroborate recent experimental evidence that the incorporation of CNTs improve fatigue life by a factor of two to three in in-plane cyclic loading. We show that in both the critical and sub-critical cases, the degree of delamination suppression is most pronounced at lower levels of applied cyclic strain energy release rate, ΔG. High-resolution scanning electron microscopy of the fracture surfaces suggests that the presence of the CNTs at the delamination crack front slows the propagation of the crack due to crack bridging, nanotube fracture, and nanotube pull-out. Further examination of the sub-critical fracture surfaces shows that the relative proportion of CNT pull-out to CNT fracture is dependent on the applied cyclic strain energy, with pull-out dominating as ΔG is reduced. The conditions for crack propagation via matrix cracking and nanotube pull-out and fracture are studied analytically using fracture mechanics theory and the results compared with data from the experiments. It is believed that the shift in the fracture behavior of the CNTs is responsible for the associated increase in the inter-laminar fracture resistance that is observed at lower levels of ΔG relative to composites not containing CNTs.  相似文献   

17.
This paper presents the development of glass fibres coated with nanocomposites consisting of carbon nanotubes (CNTs) and epoxy. Single glass fibres with different CNT content coating are embedded in a polymer matrix as a strain sensor for composite structures. Raman spectroscopy and electrical response of glass fibres under mechanical load are coupled for in situ sensing of deformation in composites. The results show that the fibres with nanocomposite coating exhibit efficient stress transfer across the fibre/matrix interface, and these with a higher CNT content are more prone to fibre fragmentation at the same matrix strain. A relationship between the fibre stress and the change in electrical resistance against the fibre strain is established. The major finding of this study has a practical implication in that the fibres with nanocomposite coating can serve as a sensor to monitor the deformation and damage process in composites.  相似文献   

18.
Due to the enormous difference in the scales involved in correlating the macroscopic properties with the micro- and nano-physical mechanisms of carbon nanotube-reinforced composites, multiscale mechanics analysis is of considerable interest. A hybrid atomistic/continuum mechanics method is established in the present paper to study the deformation and fracture behaviors of carbon nanotubes (CNTs) in composites. The unit cell containing a CNT embedded in a matrix is divided in three regions, which are simulated by the atomic-potential method, the continuum method based on the modified Cauchy–Born rule, and the classical continuum mechanics, respectively. The effect of CNT interaction is taken into account via the Mori–Tanaka effective field method of micromechanics. This method not only can predict the formation of Stone–Wales (5-7-7-5) defects, but also simulate the subsequent deformation and fracture process of CNTs. It is found that the critical strain of defect nucleation in a CNT is sensitive to its chiral angle but not to its diameter. The critical strain of Stone–Wales defect formation of zigzag CNTs is nearly twice that of armchair CNTs. Due to the constraint effect of matrix, the CNTs embedded in a composite are easier to fracture in comparison with those not embedded. With the increase in the Young’s modulus of the matrix, the critical breaking strain of CNTs decreases.  相似文献   

19.
The macroscopic corrosion phenomenon of the CNTs reinforced Mg composites remarkably occurred in the moist environment, due to a large potential of the galvanic cells formed between α-Mg matrix and CNTs. Therefore, it is necessary to reduce the potential difference at their interfaces in order to obstruct the galvanic corrosion phenomenon. In this study, AZ61B alloy composites reinforced with CNTs (CNT/AZ61B) were fabricated by powder metallurgy method, and their potential differences between CNTs and the α-Mg matrix were reduced by concentration of Al atoms around CNTs via heat treatment. The potential distribution around CNTs was measured by using scanning Kelvin probe force microscopy (SKPFM). Heat treatment of CNT/AZ61B composites at 823 K for 10 h caused the obvious concentration of Al atoms around CNTs, and resulted in the remarkable decrease of the potential difference at the interface between the α-Mg matrix and CNTs. Additionally, the salt water immersion test results indicated that the corrosion rate of CNTs/AZ61B composite materials after heat treatment was obviously reduced to less than about 30% of the non-treated composite material. Thus, the changes of α-Mg matrix potential by concentrating Al atoms around CNTs was effective to improve initial galvanic corrosion resistance of CNTs reinforced Mg composites.  相似文献   

20.
The interest in carbon nanotubes (CNTs) as reinforcements for aluminium (Al) has been growing considerably. Efforts have been largely focused on investigating their contribution to the enhancement of the mechanical performance of the composites. The uniform dispersion of CNTs in the Al matrix has been identified as being critical to the pursuit of enhanced properties. Ball milling as a mechanical dispersion technique has proved its potential. In this work, we use ball milling to disperse up to 5 wt.% CNT in an Al matrix. The effect of CNT content on the mechanical properties of the composites was investigated. Cold compaction and hot extrusion were used to consolidate the ball-milled Al–CNT mixtures. Enhancements of up to 50% in tensile strength and 23% in stiffness compared to pure aluminium were observed. Some carbide formation was observed in the composite containing 5 wt.% CNT. In spite of the observed overall reinforcing effect, the large aspect ratio CNTs used in the present study were difficult to disperse at CNT wt.% greater than 2, and thus the expected improvements in mechanical properties with increase in CNT weight content were not fully realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号