首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
熔盐冷却球床堆采用球形燃料元件,冷却剂采用高温熔盐,其堆内热源分布与压水堆有着明显的区别,而与同样使用球形燃料元件的高温气冷堆相比,燃料球产生的中子和γ会在冷却剂中沉积更多的能量,因此准确计算堆内释热率分布对于这种新型反应堆的热工水力设计、瞬态分析、结构力学设计等都有重要意义。本文使用蒙特卡罗计算程序MCNP对中国科学院设计的10 MW固态燃料钍基熔盐实验堆(TMSR-SF1)堆内的释热率分布进行了详细计算研究,通过使用光子产生偏倚卡(pikmt),经过3次MCNP输运计算得到了TMSR-SF1寿期初(BOL)及寿期末(EOL)堆内各部件的总释热率、体积释热率分布和最大体积释热率。计算结果显示,燃料球释热率占堆内总释热率的94%以上,熔盐和反射层释热率占总释热率的1%以上,其他堆内部件释热率的比例都小于1%。寿期末燃料球、控制棒与石墨球的释热率均有所减少,而反射层等其他构件的释热率有所增加。  相似文献   

2.
针对中国科学院设计的2 MW固态钍基熔盐堆(TMSR-SF)堆芯,采用蒙特卡罗程序MCNP精确描述堆芯TRISO包覆燃料颗粒、燃料球排布,建立了包含燃料元件、熔盐冷却剂、石墨反射层、中心石墨通道、控制棒及反射层通道的三维全堆芯模型,计算了TMSR-SF初始有效增殖因数、中子能谱、功率分布、控制系统价值、停堆裕量、反应性系数、中子动力学参数等堆芯物理参数,为TMSR-SF的物理优化及热工安全分析提供必要的参数。  相似文献   

3.
氟盐冷却高温球床堆(PB-FHR)中燃料球的装卸依靠浮力完成。球床结构受堆芯几何、装卸料速度、熔盐密度、熔盐流动等诸多因素的影响,其不确定性是反应堆物理设计和安全分析中重点考虑的内容。参考装卸料实验台架(PRED)的实验结果,采用蒙特卡罗程序(MCNP)完成了固态燃料钍基熔盐实验堆(TMSR-SF1)球床堆积密度、球床底部形状、冷却剂泄漏导致的液位下降等因素对中子物理关键参数的影响分析。结果表明,堆积密度的增加(50%~64%)导致燃料球装载量的增加、有效增殖因数的增加、温度系数的增加和控制棒价值的减小;相对于平坦型球床底部结构,外锥型结构会随着锥角的增加导致反应性先增加后减小,内锥型和斜面型结构则会引入负反应性;冷却剂泄漏事故引起的堆芯冷却剂液位大幅降低会导致堆积密实并引入负反应性。   相似文献   

4.
高温气冷堆新燃料元件运输容器临界安全分析   总被引:3,自引:1,他引:2       下载免费PDF全文
采用基于蒙特卡罗方法的MCNP5程序对高温气冷堆所用的球形燃料元件进行描述;根据包覆燃料颗粒在燃料球内的分布性质构建了8种不同模型,并研究不同模型对有效增殖因子(keff)和计算时间的影响,获得了临界计算问题中最优的燃料球模型;运用MCNP5描述燃料球运输容器,并研究了容器中子吸收板厚度、外容器壁厚、缓冲层材料、反射层材料、容器形状、容器结构缺失和水密度等影响运输容器临界安全的因素。结果表明,所研究的高温气冷堆新燃料元件运输容器在正常运输条件下和事故运输条件下均处于临界安全状态,其临界安全指数(CSI)可定为0。   相似文献   

5.
《核动力工程》2017,(4):128-133
采用量热法,基于热平衡条件下的静态等温法测量了不锈钢在堆内的释热率,并探索不锈钢释热率随沿堆内活性区轴向高度的分布情况以及与堆功率之间的关系。同时,利用MCNP程序计算了相应的不锈钢的释热率,通过实验手段探索MCNP程序计算不锈钢释热率的准确性。研究表明:不锈钢在堆内的释热率与所处活性区位置以及堆功率密切相关;不锈钢的释热率沿活性区轴向近似呈截断余弦曲线分布;最大释热率位于反应堆活性区中心平面偏下约50 mm处,且与堆功率呈线性递增关系。在研究范围内,利用MCNP程序计算得到的不锈钢释热率较实际测量值平均偏大18.1%。从工程应用角度讲,MCNP程序所计算的不锈钢释热率对实际工程应用具有一定指导意义。  相似文献   

6.
氟盐冷却高温堆(FHR)采用氟盐冷却球形燃料元件,其中子物理计算面临双重不均匀性问题:燃料球在堆芯内的随机排布和包覆燃料颗粒在燃料球中的随机排布。此问题是该堆型设计中面临的主要挑战之一。本文基于MCNP程序和固态燃料钍基熔盐堆(TMSR-SF1)模型完成了不同燃料球床与燃料球描述对关键中子学参数(如keff、堆芯能谱、控制棒价值和温度系数等)的影响分析。燃料球床描述使用随机序列添加(RSA)方法建立了随机球床模型与体心立方(BCC)结构的等效规则模型。包覆燃料颗粒描述则基于简立方(SC)等效模型利用MCNP程序中的URAN卡实现随机扰动。结果表明,包覆燃料颗粒随机分布的影响远小于燃料球随机分布的影响;尽管具有相同的总堆积密度,等效规则模型相比于随机球床模型会增加堆芯中子的泄漏,低估冷态满装载反应性约0.5%,高估控制棒价值约5%。  相似文献   

7.
为提高核电设计中反应堆堆内构件释热率计算的准确性,本文在原来MCNP外中子源模型计算方法的基础上,计算分析瞬发裂变γ对堆内构件释热率的贡献。计算结果显示,考虑瞬发裂变γ使得堆内构件的释热率增加9%~38%,离堆芯越近的堆内构件的增加值越大。另外,分析认为缓发γ对堆内构件释热率的贡献与瞬发裂变γ相当。因而反应堆堆内构件释热率计算中除了考虑中子及中子俘获所生γ的贡献,还应该考虑瞬发裂变γ和缓发γ的贡献。  相似文献   

8.
为了探究材料释热率在研究堆孔道内的轴向分布规律,以高通量工程试验堆(HFETR)G7孔道为例,设计一种材料释热率测量装置。通过数值模拟方法得到释热率测量装置及试验段在载荷作用下的应变分布云图,采用物理计算得到量热计校对桥和测量桥的温度参数,并利用本装置在G7孔道开展释热率测量试验。结果表明,该装置整体结构满足强度要求,试验段量热计之间需加装保护管;计算得出样品、校对桥和测量桥的温度低于材料熔点,装置满足热工要求;试验测得的释热率值随堆功率变化规律性强,且不同材料在不同能量等级的γ射线环境下,对γ的吸收性是有区别的。因此,本装置可以作为HFETR释热率测量工具,为确定不同材料在堆内释热率分布情况提供保障。   相似文献   

9.
反应堆辐照材料上中子与γ的释热率是该材料在堆中热工计算的重要输入参数.本文基于蒙特卡罗粒子输运程序(MCNP),计算了某堆首炉高热中子堆芯布置下,L12中心孔道中不同材料(水、T6061铝、单晶硅、不锈钢、锆合金)轴向的中子、γ释热率分布.计算结果表明,活性区轴向高度为0~1000 mm,中子与γ在材料上的最大释热率点...  相似文献   

10.
10 MW固态燃料钍基熔盐堆稳态物理-热工耦合   总被引:2,自引:0,他引:2  
固态燃料钍基熔盐堆(Thorium Molten Salt Reactor-Solid Fuel,TMSR-SF1)作为第四代先进核反应堆堆型之一,继承了熔盐冷却剂和球形燃料元件的许多优点和技术基础,具有良好的经济性、设计上的固有安全性、钍铀燃料的可持续性和防核扩散性。本文以10 MW固态燃料钍基熔盐堆为模型,利用MCNP(Monte Carlo N Particle Transport Code)和ANSYS Fluent等模拟程序对其进行多物理耦合分析,同时利用C++语言编写了堆芯活性区的物理-热工耦合计算程序,实现了MCNP计算结果与Fluent程序的对接,并且通过对比耦合前后结果,分析了堆芯功率密度分布、有效增殖因子、温度分布等主要参数,为熔盐堆的设计、安全性评估和操作运行提供了参考依据。  相似文献   

11.
The solid fuel thorium molten salt reactor(TMSR-SF1) is a 10-MWth fluoride-cooled pebble bed reactor. As a new reactor concept, one of the major limiting factors to reactor lifetime is radiation-induced material damage. The fast neutron flux(E 0.1 MeV) can be used to assess possible radiation damage. Hence, a method for calculating high-resolution fast neutron flux distribution of the full-scale TMSR-SF1 reactor is required. In this study,a two-step subsection approach based on MCNP5 involving a global variance reduction method, referred to as forward-weighted consistent adjoint-driven importance sampling, was implemented to provide fast neutron flux distribution throughout the TMSR-SF1 facility. In addition,instead of using the general source specification cards, the user-provided SOURCE subroutine in MCNP5 source code was employed to implement a source biasing technique specialized for TMSR-SF1. In contrast to the one-step analog approach, the two-step subsection approach eliminates zero-scored mesh tally cells and obtains tally results with extremely uniform and low relative uncertainties.Furthermore, the maximum fast neutron fluxes of the main components in TMSR-SF1 are provided, which can be used for radiation damage assessment of the structural materials.  相似文献   

12.
钍基熔盐堆核能系统项目是中科院先导科技专项之一,其战略性目标是研发第四代熔盐冷却裂变反应堆核能系统。基于10 MWt固态燃料熔盐堆的系统设计,开发了适用于球床式反应堆系统的安全分析软件,并以高温气冷堆为对象对程序计算结果的准确性进行了验证。基于该软件程序,对固态燃料球床堆(Thorium Molten Salt Reactor-Solid Fuel,TMSR-SF)控制棒失控抽出事故进行了分析计算,研究了不同停堆限值及各停堆信号对事故的影响。计算结果表明,超功率停堆限值越高,出口温度限值越大,信号延迟时间越长,反应堆停堆越晚,堆芯功率和燃料最高温度越高。在TMSR-SF控制棒失控抽出事故下,燃料最高温度不超过860°C,远低于1 600°C的熔化温度限值。  相似文献   

13.
高温气冷堆采用弥散在石墨基体中的包覆颗粒燃料。包覆颗粒在燃料球内的离散分布及燃料球在堆芯内的离散分布共同导致了燃料分布的双重不均匀性,其分布还具有随机性,由此可能对反应堆的某些参数造成影响。建立适当燃料颗粒随机分布的几何模型,并用MCNP对模型进行相关计算,并与规则分布模型相比较,分析了分布的随机性对有效增殖因数的影响。结果显示,燃料颗粒随机分布会使全堆有效增殖因数较规则模型的稍大,两种模型偏差的主要原因在于两种颗粒排列方式在空间和角度分布的不同。  相似文献   

14.
固态钍基熔盐堆(Thorium-based Molten Salt Reactor with Solid Fuel,TMSR-SF)是第四代核反应堆堆型之一,它融合了高温气冷堆的石墨基质包覆颗粒燃料球技术和熔盐堆的高温熔盐冷却剂技术。堆芯的物理设计和几何设计依赖于燃料球在堆芯中的堆积因子,为研究球床堆堆芯模型内燃料球的堆积三维结构,本文提出基于折射率匹配的方法对球床进行三维重构的方案,并通过初步的模拟实验对程序进行验证,旨在探索该方法在球床三维重构中的可行性。针对三维重构中的一系列关键问题进行阐释,并提出相应的解决方案;同时给出了三维重构方案的完整流程,并计算出了衡量三维重构精确度的度量值:直径重叠量。最后,搭建了一个小型规则排布的球床实验装置,通过折射率匹配技术开展球床可视化实验以探索该方案在球床三维重构中的精确度,并说明该方法的可行性。试验结果表明,颗粒间平均重叠量为1.43 mm,重构精度有待提高,重构方法有待改进。  相似文献   

15.
球形燃料元件中包覆颗粒的分布效应研究   总被引:1,自引:0,他引:1  
在球形燃料元件中,包覆颗粒的填充因子低于10%,分布具有很大的随机性。本文利用MATLAB程序实现了4种填充的建模方式,即体积等效规则填充、扰动的规则填充、随机的规则填充和完全随机填充模拟燃料球中包覆颗粒的分布。基于固态燃料钍基熔盐堆(Thorium-based Molten Salt Reactor with Solid Fuel,TMSR-SF1)设计中选用的包覆颗粒燃料参数,使用蒙特卡罗程序MCNP6 1.0和ENDF/B VII.0数据库进行了全反射边界条件下的单燃料球临界计算,精确量化了不同的建模方式引起的中子物理特性参数的差异。计算表明,这4种建模方式形成了不同的包覆颗粒聚集程度。包覆颗粒的聚集会导致丹可夫效应的增强,从而增大了中子被燃料吸收的概率,无限增殖因数随之增大,燃料温度系数随之减小。  相似文献   

16.
By altering the coolant flow direction in a pebble bed reactor from axial to radial, the pressure drop can be reduced tremendously. In this case the coolant flows from the outer reflector through the pebble bed and finally to flow paths in the inner reflector. As a consequence, the fuel temperatures are elevated due to the reduced heat transfer of the coolant. However, the power profile and pebble size in a radially cooled pebble bed reactor can be optimized to achieve lower fuel temperatures than current axially cooled designs, while the low pressure drop can be maintained.The radial power profile in the core can be altered by adopting multi-pass fuel management using several radial fuel zones in the core. The optimal power profile yielding a flat temperature profile is derived analytically and is approximated by radial fuel zoning. In this case, the pebbles pass through the outer region of the core first and each consecutive pass is located in a fuel zone closer to the inner reflector. Thereby, the resulting radial distribution of the fissile material in the core is influenced and the temperature profile is close to optimal.The fuel temperature in the pebbles can be further reduced by reducing the standard pebble diameter from 6 cm to a value as low as 1 cm. An analytical investigation is used to demonstrate the effects on the fuel temperature and pressure drop for both radial and axial cooling.Finally, two-dimensional numerical calculations were performed, using codes for neutronics, thermal-hydraulics and fuel depletion analysis, in order to validate the results for the optimized design that were obtained from the analytical investigations. It was found that for a radially cooled design with an optimized power profile and reduced pebble diameter (below 3.5 cm) both a reduction in the pressure drop ( bar), which increases the reactor efficiency with several percent, and a reduction in the maximum fuel temperature (C) can be achieved compared to present axially cooled designs.  相似文献   

17.
《Annals of Nuclear Energy》2007,34(1-2):83-92
A renewed interest has been raised for liquid-salt-cooled nuclear reactors. The excellent heat transfer properties of liquid-salt coolants provide several benefits, like lower fuel temperatures, higher average coolant temperature, increased core power density and better decay heat removal, and thus higher achievable core power. In order to benefit from the on-line refueling capability of a pebble bed reactor, the liquid salt pebble bed reactor (LSPBR) is proposed. This is a high temperature pebble bed reactor with a fuel design similar to existing HTRs, but using a liquid-salt as coolant. In this paper, the selection criteria for the liquid-salt coolant are described. Based on its neutronic properties, LiF–BeF2 (flibe) was selected for the LSPBR. Two designs of the LSPBR were considered: a cylindrical core and an annular core with a graphite inner reflector. Coupled neutronic thermal-hydraulic calculations were performed to obtain the steady state power distribution and the corresponding fuel temperature distribution. Calculations were performed to investigate the decay heat removal capability in a protected loss-of-forced cooling accident. The maximum allowable power that can be produced with the LSPBR is hereby determined.  相似文献   

18.
For designing and optimizing the reactor core of modular pebble-bed fluoride salt-cooled high-temperature reactor (PB-FHR),it is of importance to simulate the coupled fluid and particle flow due to strong coolantpebble interactions.Computational fluid dynamics and discrete element method (DEM) coupling approach can be used to track particles individually while it requires a fluid cell being greater than the pebble diameter.However,the large size of pebbles makes the fluid grid too coarse to capture the complicated flow pattern.To solve this problem,a two-grid approach is proposed to calculate interphase momentum transfer between pebbles and coolant without the constraint on the shape and size of fluid meshes.The solid velocity,fluid velocity,fluid pressure and void fraction are mapped between hexahedral coarse particle grid and fine fluid grid.Then the total interphase force can be calculated independently to speed up computation.To evaluate suitability of this two-grid approach,the pressure drop and minimum fluidization velocity of a fluidized bed were predicted,and movements of the pebbles in complex flow field were studied experimentally and numerically.The spouting fluid through a central inlet pipe of a scaled visible PB-FHR core facility was set up to provide the complex flow field.Water was chosen as liquid to simulate the molten salt coolant,and polypropylene balls were used to simulate the pebble fuels.Results show that the pebble flow pattern captured from experiment agrees well with the simulation from two-grid approach,hence the applicability of the two-grid approach for the later PB-FHR core design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号