首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
High temperature titanium matrix composites (TMCs) with different volume fraction of reinforcements were insitu synthesized by casting and hot forging. An effort was made to investigate the mechanical properties as a function of the microstructure of composites. Tensile tests were performed at room temperature, 600 °C, 650 °C and 700 °C respectively. Creep behavior at 650 °C was characterized in the stress range of 200-300 MPa. Results indicated that the composite with 2.11 vol.% reinforcements had the highest tensile strength and lowest steady state creep rate. Morphology of TiB whiskers was critical to mechanical properties of TMCs. TiB whiskers fracture and debonding acted as the dominant failure modes.  相似文献   

2.
In this work, yttrium-rare earth oxide solid solution, CRE2O3, produced at FAENQUIL-DEMAR at a cost of only 20% of pure commercial Y2O3, was used as sintering additive of hot-pressed Si3N4 ceramics. The objective of this work was to characterize and to investigate the creep behavior of these ceramics. The samples were sintered by hot-pressing at 1750 °C, for 30 min using a pressure of 20 MPa. Compressive creep tests were carried out in air, between 1250 and 1300 °C, for 60 h, under stresses of 200-300 MPa. The stress exponent under all conditions was determined to be about unity. The apparent activation energy obtained was around 460 kJ mol−1, corresponding to the heat of solution of the Si3N4 in the glassy phase. Both the stress exponent n and apparent activation energy Q are within the range of values reported in other studies of the compressive creep of Y2O3-Al2O3-doped-Si3N4 ceramics. X-ray diffraction (XRD) characterization shows a global reorientation of the β-Si3N4 grains and SEM observations detected no grain growth after the creep tests. These results indicate that grain-boundary sliding controlled by viscous flow is the dominant creep mechanism observed in the present study. The creep resistance presented of this samples indicates that this additive CRE2O3 can be a cheap alternative in the fabrication of Si3N4 ceramics, resulting in promising mechanical properties.  相似文献   

3.
High temperature steam electrolysis (HTSE) is one of the most promising technologies for the industrial production of hydrogen. However one of the remaining problems lies in sealing at high temperature. The reference solution is based on glass seals which presents several drawbacks. That explains why metallic seals are under development. The expected seal will be submitted to creep under low stresses between 700 °C and 900 °C, possibly involving complex loading and thermal history. The candidate material investigated in this work is a FeCrAl (OC404, Sandvik) supplied as a 0.3 mm thick sheet. The ability of this material to develop a protective layer of alumina was studied first, as well as grain size growth during thermal ageing. Creep and tensile tests were performed between 700 °C and 900 °C to determine its mechanical properties. This database was used to propose and identify an elasto-viscoplastic behavior for the material. Creep was described by the Sellars-Tegart law. This law was then used to simulate and predict creep indentation tests performed in the same range of temperatures.  相似文献   

4.
Nano-sized Sr0.5Ba0.5Nb2O6 (SBN50) powder has been synthesized, at very short reaction time, for the first time by a novel combustion method. Ba(NO3)2 and Sr(NO3)2 were used as source of Sr and Ba, respectively, while Nb-oxalate was used as the source of niobium. Urea, hexamethyltetramine (HMT) and glycine were used as fuel. The crystallite sizes in the powder ranged between 14-125 nm. X-ray diffraction analysis showed complete SBN50 phase formation at 700 °C, when urea/HMT was used as fuel, and at 800 °C when glycine was used as fuel. Ferroelectric-paraelectric phase transition temperature (Tc) close to 40 °C was observed when urea and HMT were used and the Tc was −49 °C when glycine was used. When urea was used as fuel highest dielectric constant was observed for the pellets sintered at 1250 °C for 4 h. Low dielectric loss was observed when HMT was used as fuel. Larger grain sizes in the sintered pellets were observed when glycine was used as fuel.  相似文献   

5.
In order to better understand the effect of stressed-oxidation, the performance of woven Sylramic-iBN fiber-reinforced slurry cast melt-infiltrated (MI) composites were tested in creep and fatigue under non-oxidizing conditions. Initially creep and fatigue tests were performed at 1204 °C in an argon atmosphere; however, it was observed that sufficient oxidizing species existed in the environment to degrade the composites in a manner similar to air environments. Therefore, creep and fatigue tests were performed at 1204 °C in a vacuum environment which showed no evidence of oxidation and superior properties to composites subjected to stressed-oxidation conditions. The mechanical results and microscopy of the vacuum and argon are compared to the behavior of these composites tested in air. It was found that the stress-rupture properties of the vacuum-tested composites could be predicted from single fiber creep rupture data assuming reasonable values for the Weibull modulus.  相似文献   

6.
The system of (1 − y)(Mg0.6Zn0.4)1−xCoxTiO3-yCaTiO3 was investigated to optimize its microwave dielectric properties by adopting appropriate contents of Co and Ca and by controlling sintering conditions. The effect of Co substitution was to enhance densification and Qf value, while the addition of CaTiO3 resulted in increases of dielectric constant and TCF. As an optimal compositions, 0.93(Mg0.6Zn0.4)0.95Co0.05TiO3-0.07CaTiO3 successfully demonstrated a dielectric constant of 23.04, a Qf of 79,460 GHz and a TCF value of +1.4 ppm/°C after firing at a relatively lower sintering temperature of 1200 °C. The increase of sintering temperature beyond 1200 °C tended to degrade overall microwave dielectric properties presumably due to Zn volatilization as evidenced by the presence of a Zn-deficient phase (MgTi2O5) at 1400 °C. An attempt to establish the correlation between microstructure characteristics and dielectric properties was made in this dielectric system where the extensive range of firing temperature up to 1400 °C was evaluated.  相似文献   

7.
TiO2 ceramics doped with 0.75 mol% Ca and 2.5 mol% Ta were sintered at different temperatures ranging from 1300 to 1450°C. The effects of sintering temperature on the microstructure, nonlinear electrical behavior, and dielectric properties of the ceramics were studied. The sample sintered at 1300°C exhibits the highest nonlinear coefficient (5.5) and a comparatively lower relative dielectric constant.  相似文献   

8.
The tensile creep behavior of an oxide–oxide continuous fiber ceramic composite was investigated at 1200 °C in laboratory air, in steam and in argon. The composite consists of a porous alumina–mullite matrix reinforced with laminated, woven mullite/alumina (Nextel™720) fibers, has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. The tensile stress–strain behavior was investigated and the tensile properties measured at 1200 °C. The elastic modulus was 74.5 GPa and the ultimate tensile strength was 153 MPa. Tensile creep behavior was examined for creep stresses in the 70–140 MPa range. Primary and secondary creep regimes were observed in all tests. Creep run-out (set to 100 h) was achieved in laboratory air for creep stress levels ?91 MPa. The presence of either steam or argon accelerated creep rates and reduced creep lifetimes. Composite microstructure, as well as damage and failure mechanisms were investigated.  相似文献   

9.
Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC) was used to synthesize a new series of maleimides with triazole ring moieties (triazole-maleimides, TA-MIs). The physical and thermal properties of the obtained TA-MIs were studied. The TA-MIs showed good solubility in non-proton strong polar solvents such as DMF, DMAc and NMP. The polymerization of TA-MIs can be carried out at a temperature ranged from 140 °C to 250 °C. Td5 of the resulted poly(TA-MIs) reached 335-345 °C under nitrogen.  相似文献   

10.
The paper presents results of microstructural investigations of MgAl5Ca3Sr magnesium alloys in the as‐cast condition, after creep tests at 180 °C, and after heat treatment at 450 °C for 4.5 hours. The microstructure of MgAl5Ca3Sr alloy is composed of α‐Mg solid solution, irregular shaped (Mg,Al)2Ca phase with C36 crystal structure, bulky (Mg,Al)17(Sr,Ca)2 phase, fine lamellar Mg2Ca phase with C14 structure, needle‐shaped Al2Ca precipitates with the C15 crystal structure. The precipitation of the needle‐shaped Al2Ca phase in the α‐Mg grains and spheroidization of the C14 phase were found after heat treatment at 450 °C in argon atmosphere. The (Mg,Al)2Ca (C36) and (Mg,Al)17(Sr,Ca)2 phases seems to be stable at 450 °C, however, the increasing of aluminum content in C36 compound was observed suggesting the initial stage of C36 → C15 transformation. After creep deformation at 180 °C precipitates of the Al2Ca phase were found in α‐Mg phase. The intermetallic compounds are stable at 180 °C. The MgAl5Ca3Sr alloy exhibits good creep resistance up to 75 MPa. Tensile properties are comparable to those of Mg‐RE‐Zn–Zr alloys.  相似文献   

11.
This paper presents structural, magnetization and transport properties measurements carried out on as-deposited Co (400 Å) thin film as well as samples annealed in the temperature range 100-500 °C in steps of 100 °C for 1 h. The samples used in this work were deposited on float glass substrates using ion beam sputtering technique. The magnetization measurements carried out using MOKE technique, clearly indicates that as-deposited as well as annealed samples up to 500 °C show well saturation magnetization with applied magnetic field. The as-deposited sample shows coercivity value (Hc) of 26 Oe, and it is increased to 94 Oe for 500 °C-annealed sample. A minimum coercivity value of 15 Oe is obtained for 200 °C annealed sample. The XRD measurements of as deposited films show microcrystalline nature of Co film, which becomes crystalline with increase in annealing temperature. The corresponding resistivity measurements show gradual decrease in resistivity. AFM technique was employed to study the surface morphology of as deposited film as well as annealed thin films. Observed magnetization, and resistivity behaviour is mainly attributed to the (i) change in crystal structure (ii) increase in grain size and (iii) stress relaxation due to the annealing treatment.  相似文献   

12.
FeCoNd thin film with thickness of 166 nm has been fabricated on silicon (1 1 1) substrates by magnetron co-sputtering and annealed for one hour under magnetic field at different temperatures (Ta) from 200 °C to 700 °C. The As-deposited and annealed FeCoNd film samples at Ta ≤ 500 °C were amorphous while the ones obtained at Ta ≥ 600 °C were crystallized. We found that the perpendicular anisotropy field gradually decreases as the annealing temperature increases from room temperature to 300 °C. A well induced in-plane uniaxial anisotropy is achieved at the annealing temperature between 400 and 600 °C. The variation of the dynamic magnetic properties of annealed FeCoNd films can be well explained by the Landau-Lifshitz equation with the variation of the anisotropy field re-distribution and the damping constant upon magnetic annealing. The magnetic annealing might be a powerful post treatment method for high frequency application of magnetic thin films.  相似文献   

13.
The microstructures, mechanical and corrosion properties of three extruded Mg-2Zn-0.46Y-xNd alloys (x = 0.0, 0.5, 1.0 wt%) were studied by optical microscopy, scanning electronic microscopy (SEM), electrochemical measurements and tensile tests. Microstructural observations indicated that Nd led to the uniformity and the variation of morphology of major second phase; tensile tests showed that Nd can improve the ductility at moderate amount (0.5 wt%) and will be detrimental up to 1.0%; Mg-2Zn-0.46Y-0.5Nd alloy exhibited excellent mechanical properties (σb, 269.0 MPa, σ0.2, 165.6 MPa and elongation, 24%); electrochemical tests revealed that Nd can enhance the corrosion resistance and Mg-2Zn-0.46Y-1.0Nd alloy had lowest corrosion current density, which was reasoned that the line-shape and rodlike NdZn2 phase might serve as corrosion barriers and the dissolved Nd can raise the electrode potential of the matrix.  相似文献   

14.
La1−xSrxMnO3 (x=0.3) (LSM) nanoparticles were prepared by a sonication-assisted coprecipitation method. The coprecipitation reaction is carried out with ultrasound radiation. Lower sintering temperatures are required for the sonication-assisted product. Fully crystallized LSM with an average particle size 24 nm is obtained after the as-prepared mixture is annealed at 900 °C for 2 h. Magnetic properties indicate that the transition temperature from the paramagnetic to ferromagnetic state of the sample is quite sharp and occurs at 366 K for samples annealed for 2 h at 900 and 1100 °C.  相似文献   

15.
The mechanical properties of magnesium matrix composites reinforced by pyrolytic carbon coated short carbon fiber at temperatures close to and above the solidus temperature were investigated by tensile tests for the first time. Microstructural observations and fractographic analysis were carried out in order to reveal the damage mechanisms of the composites with different fraction of liquid. Tensile strength of the composites decreased monotonously with temperature, an exponential equation relating the tensile strength to temperature and liquid fraction was derived. The elongation increases monotonously with temperatures from 400 °C to 428 °C (solidus temperature), and then decreases gradually with increasing fraction of liquid except a trough at 432 °C. The composites almost have no ductility and cannot sustain tensile stress when the fraction of liquid reaches 8%. The amount and distribution of liquid phase in the composites directly determines their mechanical properties and damage behavior.  相似文献   

16.
This paper presents an experimental investigation of thermo-mechanical material properties of AA 6056-T4, which is used extensively in aeronautic applications. Monotonic tensile tests have been carried out on the dog-bone type specimens at temperatures ranging from room temperature (16 °C) to high temperature (450 °C) with two different strain rates; viz. high strain rate (∼0.002 s−1) and low strain rate (∼0.0002 s−1). Specimens were heated with the help of Joule heating system using Gleeble® 3500 machine at a temperature rate of 25 °C/s. Material properties which were investigated include the Young’s modulus, yield strength at 0.1% plastic strain and hardening modulus.  相似文献   

17.
A3(PO4)2 compounds have different crystal structures when A sites are occupied by Ca or heavy alkaline earth metal atoms (Sr or Ba). The compounds with isomorphous crystal structure were synthesized by solid-state reaction method when the A-site atoms were Sr or Ba, and their crystal structure and microstructure of the sintered ceramics were investigated by X-ray powder diffraction (XRD) and scanning electron microscope (SEM), respectively. The microwave dielectric properties were measured using a network analyzer. It was found that Ba3(PO4)2 could be sintered at 1060 °C, while the α-Sr3(PO4)2 ceramics that has a smaller Sr2+ ionic radius, could be sintered at 1200 °C, and higher relative densities were obtained. The dielectric constant (?) of the α-Sr3(PO4)2 is higher than that of Ba3(PO4)2, but Ba3(PO4)2 has a higher Q × f value than that of β-Ca3(PO4)2 and α-Sr3(PO4)2, which could be interpreted by the differences in ionic polarizability and bond strength. The temperature coefficients of resonant frequency (τf) for all samples with isomorphous crystal structure have positive values, ranging between +11 and +66 ppm °C−1.  相似文献   

18.
The aim of this study was to investigate the hydroxyapatite coating on the Ti-35Nb-xZr alloy by electron beam-physical vapor deposition. The Ti-35Nb-xZr ternary alloys contained from 3 wt.% to 10 wt.% Zr content were manufactured by arc melting furnace. Hydroxyapatite (HA) coatings were prepared by electron-beam physical vapor deposition (EB-PVD) method, and crystallization treatment was performed in Ar atmosphere at 300 and 500 °C for 1 h. The coated surface morphology of Ti-35Nb-xZr alloy was examined by FE-SEM, EDX and XRD, respectively. In order to evaluate the corrosion behavior, the tests were performed by potentiodynamic, cyclic polarization and AC impedance test. All the electrochemical data were obtained using a potentiostat. The Ti-35Nb-xZr alloys exhibited equiaxed structure with β phase, the peak of β phase increased with Zr contents. The hardness and elastic modulus of Ti-35Nb-xZr alloys decreased as Zr content increased. The HA coated layer was approximately 150 nm and Ca/P ratio of HA coated surface after heat treatment at 500 °C was around 1.67. The HA thin film consisted of small droplets with spherical shape by crystallization. From the anodic polarization curves, HA coated and heat treated Ti-35Nb-10Zr alloy showed higher corrosion potential than other samples. HA coated film on the Ti-35Nb-10Zr alloy can be shown high polarization resistance by crystallization.  相似文献   

19.
Creep behavior of an Mg–6Al–1Zn–0.7Si cast alloy was investigated by compression and impression creep test methods in order to evaluate the correspondence of impression creep results and creep mechanisms with conventional compression test. All creep tests were carried out in the temperature range 423–523 K and under normal stresses in the range 50–300 MPa for the compression creep and 150–650 MPa for impression creep tests. The microstructure of the AZ61–0.7Si alloy consists of β-Mg17Al12 and Mg2Si intermetallic phases in the α-Mg matrix. The softening of the former at high temperatures is compensated by the strengthening effect of the latter, which acts as a barrier opposing recovery processes. The impression results were in good agreement with those of the conventional compressive creep tests. The creep behavior can be divided into two stress regimes, with a change from the low-stress regime to the high-stress regime occurring, depending on the test temperature, around 0.009 < (σ/G) < 0.015 and 0.021 < (σimp/G) < 0.033 for the compressive and impression creep tests, respectively. Based on the steady-state power-law creep relationship, the stress exponents of about 4–5 and 10–12 were obtained at low and high stresses, respectively. The low-stress regime activation energies of about 90 kJ mol−1, which are close to that for dislocation pipe diffusion in the Mg, and stress exponents in the range of 4–5 suggest that the operative creep mechanism is pipe-diffusion-controlled dislocation viscous glide. This behavior is in contrast to the high-stress regime, in which the stress exponents of 10–12 and activation energies of about 141 kJ mol−1 are indicative of a dislocation climb mechanism similar to those noted in dispersion strengthening mechanisms.  相似文献   

20.
The Sr and Ca added to BaTiO3 in order to shift transition temperature near room temperature. The donor (Yb2O3) and acceptor (MnCO3) impurities were added to the (Ba,Sr,Ca)TiO3 powder for the improvement of structural and electrical properties. The (Ba,Sr,Ca)TiO3 powder was made by sol-gel method and the thick films were fabricated by screen-printing. We fabricated array type thick films. The 1 mm × 3 mm array thick films were arranged 2 × 8. Relative dielectric constant and dielectric loss of Yb2O3 0.1 mol% doped (Ba,Sr,Ca)TiO3 array thick film were 1068 and 2.8%, respectively at Curie temperature, 44 °C. Pyroelectric coefficient and F.M.D* showed 21.7 × 10−9 C/cm2 K and 3.2 × 10−9 C cm/J, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号