首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Long and short buried-channel $hbox{In}_{0.7}hbox{Ga}_{0.3}hbox{As}$ MOSFETs with and without $alpha$-Si passivation are demonstrated. Devices with $alpha$-Si passivation show much higher transconductance and an effective peak mobility of 3810 $hbox{cm}^{2}/ hbox{V} cdot hbox{s}$. Short-channel MOSFETs with a gate length of 160 nm display a current of 825 $muhbox{A}/muhbox{m}$ at $V_{g} - V_{t} = hbox{1.6} hbox{V}$ and peak transconductance of 715 $muhbox{S}/muhbox{m}$. In addition, the virtual source velocity extracted from the short-channel devices is 1.4–1.7 times higher than that of Si MOSFETs. These results indicate that the high-performance $hbox{In}_{0.7}hbox{Ga}_{0.3} hbox{As}$-channel MOSFETs passivated by an $alpha$ -Si layer are promising candidates for advanced post-Si CMOS applications.   相似文献   

2.
We report on performance improvement of $n$-type oxide–semiconductor thin-film transistors (TFTs) based on $hbox{TiO}_{x}$ active channels grown at 250 $^{circ}hbox{C}$ by plasma-enhanced atomic layer deposition. TFTs with as-grown $hbox{TiO}_{x}$ films exhibited the saturation mobility $(mu_{rm sat})$ as high as 3.2 $hbox{cm}^{2}/hbox{V}cdothbox{s}$ but suffered from the low on–off ratio $(I_{rm ON}/I_{rm OFF})$ of $hbox{2.0} times hbox{10}^{2}$. $hbox{N}_{2}hbox{O}$ plasma treatment was then attempted to improve $I_{rm ON}/I_{rm OFF}$. Upon treatment, the $hbox{TiO}_{x}$ TFTs exhibited $I_{rm ON}/I_{rm OFF}$ of $hbox{4.7} times hbox{10}^{5}$ and $mu_{rm sat}$ of 1.64 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, showing a much improved performance balance and, thus, demonstrating their potentials for a wide variety of applications such as backplane technology in active-matrix displays and radio-frequency identification tags.   相似文献   

3.
We have fabricated high-$kappa hbox{Ni}/hbox{TiO}_{2}/hbox{ZrO}_{2}/ hbox{TiN}$ metal–insulator–metal (MIM) capacitors. A low leakage current of $hbox{8} times hbox{10}^{-8} hbox{A/cm}^{2}$ at 125 $^{circ}hbox{C}$ was obtained with a high 38- $hbox{fF}/muhbox{m}^{2}$ capacitance density and better than the $hbox{ZrO}_{2}$ MIM capacitors. The excellent device performance is due to the lower electric field in 9.5-nm-thick $hbox{TiO}_{2}/ hbox{ZrO}_{2}$ devices to decrease the leakage current and to a higher $kappa$ value of 58 for $ hbox{TiO}_{2}$ as compared with that of $hbox{ZrO}_{2}$ to preserve the high capacitance density.   相似文献   

4.
The time, temperature, and oxide-field dependence of negative-bias temperature instability is studied in $hbox{HfO}_{2}/hbox{TiN}$, $ hbox{HfSiO}_{x}/hbox{TiN}$, and SiON/poly-Si p-MOSFETs using ultrafast on-the-fly $I_{rm DLIN}$ technique capable of providing measured degradation from very short (approximately microseconds) to long stress time. Similar to rapid thermal nitrided oxide (RTNO) SiON, $hbox{HfO}_{2}$ devices show very high temperature-independent degradation at short (submilliseconds) stress time, not observed for plasma nitrided oxide (PNO) SiON and $hbox{HfSiO}_{x}$ devices. $hbox{HfSiO}_{x}$ shows lower overall degradation, higher long-time power-law exponent, field acceleration, and temperature activation as compared to $hbox{HfO}_{2}$, which are similar to the differences between PNO and RTNO SiON devices, respectively. The difference between $ hbox{HfSiO}_{x}$ and $hbox{HfO}_{2}$ can be attributed to differences in N density in the $hbox{SiO}_{2}$ IL of these devices.   相似文献   

5.
Low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) with high- $kappa$ gate dielectrics and plasma surface treatments are demonstrated for the first time. Significant field-effect mobility $mu_{rm FE}$ improvements of $sim$86.0% and 112.5% are observed for LTPS-TFTs with $hbox{HfO}_{2}$ gate dielectric after $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments, respectively. In addition, the $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments can also reduce surface roughness scattering to enhance the field-effect mobility $mu_{rm FE}$ at high gate bias voltage $V_{G}$, resulting in 217.0% and 219.6% improvements in driving current, respectively. As a result, high-performance LTPS-TFT with low threshold voltage $V_{rm TH} sim hbox{0.33} hbox{V}$, excellent subthreshold swing S.S. $sim$0.156 V/decade, and high field-effect mobility $mu_{rm FE} sim hbox{62.02} hbox{cm}^{2}/hbox{V} cdot hbox{s}$ would be suitable for the application of system-on-panel.   相似文献   

6.
Buckling was observed in $hbox{Bi}_{5}hbox{Nb}_{3}hbox{O}_{15}$ (BiNbO) films grown on $hbox{TiN}/hbox{SiO}_{2}/hbox{Si}$ at 300 $^{circ}hbox{C}$ but not in films grown at room temperature and annealed at 350 $^{circ}hbox{C}$. The 45-nm-thick films showed a high capacitance density and a low dissipation factor of 8.81 $hbox{fF}/muhbox{m}^{2}$ and 0.97% at 100 kHz, respectively, with a low leakage current density of 3.46 $hbox{nA}/hbox{cm}^{2}$ at 2 V. The quadratic and linear voltage coefficients of capacitance of this film were 846 $hbox{ppm}/hbox{V}^{2}$ and 137 ppm/V, respectively, with a low temperature coefficient of capacitance of 226 $hbox{ppm}/^{circ}hbox{C}$ at 100 kHz. This suggests that a BiNbO film grown on a $hbox{TiN}/ hbox{SiO}_{2}/hbox{Si}$ substrate is a good candidate material for high-performance metal–insulator–metal capacitors.   相似文献   

7.
This paper reports on the application of a bilayer polymethylmethacrylate (PMMA)/ $hbox{ZrO}_{2}$ dielectric in copper phthalocyanine (CuPc) organic field-effect transistors (OFETs). By depositing a PMMA layer on $hbox{ZrO}_{2}$, the leakage of the dielectric is reduced by one order of magnitude compared to single-layer $hbox{ZrO}_{2}$. A high-quality interface is obtained between the organic semiconductor and the combined insulators. By integrating the advantages of polymer and high- $k$ dielectrics, the device achieves both high mobility and low threshold voltage. The typical field-effect mobility, threshold voltage, on/off current ratio, and subthreshold slope of OFETs with bilayer dielectric are $hbox{5.6}timeshbox{10}^{-2} hbox{cm}^{2}/hbox{V} cdot hbox{s}$, 0.8 V, $hbox{1.2} times hbox{10}^{3}$, and 2.1 V/dec, respectively. By using the bilayer dielectrics, the hysteresis observed in the devices with single-layer $hbox{ZrO}_{2}$ is no longer present.   相似文献   

8.
$hbox{SiO}_{2}/hbox{high-}kappa$ dielectric stack is a candidate for replacing the conventional $hbox{SiO}_{2}$-based dielectric stacks for future Flash memory cells. Electron traps in the high-$ kappa$ layer can limit the memory retention via the trap-assisted tunneling, and there is a pressing need for their characterization. A new two-pulse $C$$V$ measurement technique is developed in this letter, which, for the first time, allows us to probe the discharge of electron traps throughout the $hbox{SiO}_{2}/hbox{high-}kappa$ stack. It complements the charge pumping technique, which can only probe near-interface traps. It is demonstrated that a large number of electron traps, indeed, exist in the bulk of high-$kappa$ layer. Bulk electron traps also have different discharge characteristics from those near the $hbox{SiO}_{2}/hbox{high-}kappa$ interface.   相似文献   

9.
A comparative study is made of the low-frequency noise (LFN) in amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) with $hbox{Al}_{2}hbox{O}_{3}$ and $hbox{Al}_{2}hbox{O}_{3}/hbox{SiN}_{x}$ gate dielectrics. The LFN is proportional to $hbox{1}/f^{gamma}$, with $gamma sim hbox{1}$ for both devices, but the normalized noise for the $hbox{Al}_{2}hbox{O}_{3}/hbox{SiN}_{x}$ device is two to three orders of magnitude lower than that for the $hbox{Al}_{2} hbox{O}_{3}$ device. The mobility fluctuation is the dominant LFN mechanism in both devices, but the noise from the source/drain contacts becomes comparable to the intrinsic channel noise as the gate overdrive voltage increases in $hbox{Al}_{2}hbox{O}_{3}/hbox{SiN}_{x}$ devices. The $hbox{SiN}_{x}$ interfacial layer is considered to be very effective in reducing LFN by suppressing the remote phonon scattering from the $hbox{Al}_{2}hbox{O}_{3}$ dielectric. Hooge's parameter is extracted to $sim !!hbox{6.0} times hbox{10}^{-3}$ in $hbox{Al}_{2}hbox{O}_{3}/hbox{SiN}_{x}$ devices.   相似文献   

10.
A systematic study on the switching mechanism of an $hbox{Al}/ hbox{Pr}_{0.7}hbox{Ca}_{0.3}hbox{MnO}_{3}$ (PCMO) device was performed. A polycrystalline PCMO film was deposited using a conventional sputtering method. A thin Al layer was introduced to induce a reaction with the PCMO, forming aluminum oxide $(hbox{AlO}_{x})$. Transmission electron microscopy analysis of the interface between Al and PCMO showed that resistive switching was governed by the formation and dissolution of $hbox{AlO}_{x}$. Some basic memory characteristics, such as good cycle endurance and data retention of up to $hbox{10}^{4}$ s at 125 $^{circ}hbox{C}$, were also obtained. It also showed excellent switching uniformity and high device yield.   相似文献   

11.
In this paper, we report on the synthesis and applications of semiconducting nanostructures. Nanostructures of interest were zinc oxide (ZnO) nanowires and tungsten disulfide $(hbox{WS}_{2})$ nanotubes where transistors/phototransistors and photovoltaic (PV) energy conversion cells have been fabricated. ZnO nanowires were grown with both high- and low-temperature approaches, depending on the application. Individual ZnO nanowire side-gated transistors revealed excellent performance with a field-effect mobility of 928 $hbox{cm}^{2}/hbox{V} cdot hbox{s}$. ZnO networks were proposed for large-area macroelectronic devices as a less lithographically intense alternative to individual nanowire transistors where mobility values in excess of 20 $ hbox{cm}^{2}/hbox{V} cdot hbox{s}$ have been achieved. Flexible PV devices utilizing ZnO nanowires as electron acceptors and for photoinduced charge separation and transport have been presented. Phototransistors were fabricated using individual $hbox{WS}_{2}$ nanotubes, where clear sensitivity to visible light has been observed. The results presented here simply reveal the potential use of inorganic nanowires/tubes for various optoelectronic devices.   相似文献   

12.
We have studied the stress reliability of high-$kappa$ $hbox{Ni/TiO}_{2}/hbox{ZrO}_{2}/hbox{TiN}$ metal–insulator–metal capacitors under constant-voltage stress. The increasing $hbox{TiO}_{2}$ thickness on $hbox{ZrO}_{2}$ improves the 125-$^{circ}hbox{C}$ leakage current, capacitance variation $(Delta C/C)$, and long-term reliability. For a high density of 26 $hbox{fF}/mu hbox{m}^{2}$ , good extrapolated ten-year reliability of small $Delta C/ break C sim hbox{0.71}%$ is obtained for the $ hbox{Ni/10-nm-}hbox{TiO}_{2}/hbox{6.5-nm-} hbox{ZrO}_{2}/break hbox{TiN}$ device at 2.5-V operation.   相似文献   

13.
The extraction of the effective mobility on $hbox{In}_{0.53} hbox{Ga}_{0.47}hbox{As}$ metal–oxide–semiconductor field-effect transistors (MOSFETs) is studied and shown to be greater than 3600 $hbox{cm}^{2}/hbox{V} cdot hbox{s}$. The removal of $C_{rm it}$ response in the split $C$$V$ measurement of these devices is crucial to the accurate analysis of these devices. Low-temperature split $C$$V$ can be used to freeze out the $D_{rm it}$ response to the ac signal but maintain its effect on the free carrier density through the substrate potential. Simulations that match this low-temperature data can then be “warmed up” to room temperature and an accurate measure of $Q_{rm inv}$ is achieved. These results confirm the fundamental performance advantages of $hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ MOSFETs.   相似文献   

14.
Field-controllable pentacene-semiconductor-based strain sensors were fabricated with hybrid gate dielectrics using polyvinyl phenol (PVP) and high-$k$ inorganic tantalum pentoxide $(hbox{Ta}_{2}hbox{O}_{5})$ onto polyethylene naphthalate films. The $hbox{Ta}_{2}hbox{O}_{5}$ gate-dielectric layer combined with a thin PVP layer to form very smooth and hydrophobic surfaces turns out to improve the molecular structures of pentacene films significantly. The PVP– $hbox{Ta}_{2}hbox{O}_{5}$ hybrid-gate-dielectric films exhibit a high dielectric constant of 19.27 and a leakage-current density of as low as 100 $hbox{nA/cm}^{2}$ . The sensors employing a thin-film-transistor-like Wheatstone bridge configuration able to operate at reduced voltage ($sim$4 V) show good device characteristics with a field-effect mobility of 1.89 $hbox{cm}^{2}/hbox{V} cdot hbox{s}$ and a threshold voltage of $-$0.5 V. The strain sensor characterized with bending at 45$^{circ}$ with respect to the bridge bias direction with different bending radii of 50-, 40-, 30-, 20-, and 8-mm displays output signals improved in linearity in a low range of operating voltages.   相似文献   

15.
4H-SiC bipolar Darlington transistors with a record-high current gain have been demonstrated. The dc forced current gain was measured up to 336 at 200 $hbox{W/cm}^{2}$ ( $J_{C} = hbox{35} hbox{A/cm}^{2}$ at $V_{rm CE} = hbox{5.7} hbox{V}$) at room temperature. The current gain exhibits a negative temperature coefficient and remains as high as 135 at 200 $^{circ}hbox{C}$. The specific on-resistance is 140 $hbox{m}Omegacdothbox{cm}^{2}$ at room temperature and increases at elevated temperatures. An open-emitter breakdown voltage $(BV_{rm CBO})$ of 10 kV was achieved at a leakage current density of $≪hbox{1} hbox{mA/cm}^{2}$. The device exhibits an open-base breakdown voltage $(BV_{rm CEO})$ of 9.5 kV. The high current gain of SiC Darlington transistors can significantly reduce the gate-drive power consumption with the same forward-voltage drop as that of 10-kV SiC bipolar junction transistors, thus making the device attractive for high-power high-temperature applications.   相似文献   

16.
We have studied a bottom-gate polycrystalline-silicon thin-film transistor (poly-Si TFT) with amorphous-silicon (a-Si) ${rm n}^{+}$ contacts and center-offset gated structure, where intrinsic poly-Si is used in the center-offset region. The fabrication process is compatible with the conventional a-Si TFT with addition of thermal annealing for crystallization of a-Si. The bottom-gate poly-Si TFT with a 5-$muhbox{m}$ offset length exhibited a field-effect mobility of 18.3 $hbox{cm}^{2}/hbox{V} cdot hbox{s}$ and minimum OFF-state current of $hbox{2.79} times hbox{10}^{-12} hbox{A}/muhbox{m}$ at $V_{rm ds} = hbox{5} hbox{V}$. The leakage currents are two orders of magnitude lower than those of a nonoffset TFT with mobility drop from 23.8 to 18.3 $hbox{cm}^{2}/ hbox{V} cdot hbox{s}$.   相似文献   

17.
Without sacrificing the on-current in the transfer characteristics, we have successfully reduced the off-current part by the optimal $hbox{N}_{2}hbox{O}$ plasma treatment to improve the on–off-current ratio in n-type titanium oxide $( hbox{TiO}_{rm x})$ active-channel thin-film transistors. While the high-power (275 W) $hbox{N}_{2}hbox{O}$ plasma treatment oxidizes the whole $hbox{TiO}_{rm x}$ channel and results in the reduction of both on- and off-current, the optimized low-power (150 W) process makes the selective oxidation of the top portion in the channel and reduces only the off-current significantly. Increase in on–off ratio by almost five orders of magnitude is achieved without change in on-current by using the presented method.   相似文献   

18.
We report the first demonstration of metal–insulator–metal (MIM) capacitors with $hbox{Sm}_{2}hbox{O}_{3}/hbox{SiO}_{2}$ stacked dielectrics for precision analog circuit applications. By using the “canceling effect” of the positive quadratic voltage coefficient of capacitance (VCC) of $hbox{Sm}_{2}hbox{O}_{3}$ and the negative quadratic VCC of $hbox{SiO}_{2}$, MIM capacitors with capacitance density exceeding 7.3 $hbox{fF}/muhbox{m}^{2}$ , quadratic VCC of around $-hbox{50} hbox{ppm/V}^{2}$ , and leakage current density of $hbox{1} times hbox{10}^{-7} hbox{A/cm}^{2}$ at $+$3.3 V are successfully demonstrated. The obtained capacitance density and quadratic VCC satisfy the technical requirements specified in the International Technology Roadmap for Semiconductors through the year 2013 for MIM capacitors to be used in precision analog circuit applications.   相似文献   

19.
$hbox{Bi}_{5}hbox{Nb}_{3}hbox{O}_{15} (hbox{B}_{5}hbox{N}_{3})$ films grown under a low oxygen partial pressure (OP) of 1.7 mtorr showed a high leakage current density of 0.1 $hbox{A/cm}^{2}$ at 1.0 MV/cm. However, the leakage current density decreased with increasing OP to a minimum of $hbox{5.8} times hbox{10}^{-9} hbox{A/cm}^{2}$ for the film grown under 5.1 mtorr due to the decreased number of oxygen vacancies. This film also showed an improved breakdown field of 2.2 MV/cm and a large capacitance density of 24.9 $hbox{fF}/muhbox{m}^{2}$. The electrical properties of the film, however, deteriorated with a further increase in OP, which is probably due to the formation of oxygen interstitial ions. Therefore, superior electrical properties for the $ hbox{B}_{5}hbox{N}_{3}$ film can be obtained by careful control of OP.   相似文献   

20.
We report the experimental demonstration of deep-submicrometer inversion-mode $hbox{In}_{0.75}hbox{Ga}_{0.25}hbox{As}$ MOSFETs with ALD high- $k$ $hbox{Al}_{2}hbox{O}_{3}$ as gate dielectric. In this letter, n-channel MOSFETs with 100–200-nm-long gates have been fabricated. At a supply voltage of 0.8 V, the fabricated devices with 200–130-nm-long gates exhibit drain currents of 232–440 $muhbox{A}/muhbox{m}$ and transconductances of 538–705 $muhbox{S}/muhbox{m}$. The 100-nm device has a drain current of 801 $muhbox{A}/muhbox{m}$ and a transconductance of 940 $muhbox{S}/muhbox{m}$. However, the device cannot be pinched off due to severe short-channel effect. Important scaling metrics, such as on/off current ratio, subthreshold swing, and drain-induced barrier lowering, are presented, and their relations to the short-channel effect are discussed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号