首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Nanocomposite materials have been obtained by dispersing organic capped TiO2 nanocrystals (NCs) with different shape and surface chemistry in poly(methyl methacrylate) (PMMA) as a host medium. Films of the prepared nanocomposites based on TiO2 NCs have been fabricated by spin coating and morphologically characterized as a function of the preparative conditions. The organic vapor absorption ability of the PMMA/TiO2 NC based nanocomposites has been then investigated both for spherical and rod-like NCs, and the chemical nature of the coordinating organic molecules has been also varied. The results of the investigation have demonstrated that NC geometry and surface chemistry can modulate the specific absorption characteristics of the modified PMMA in order to absorb different solvent molecules (i.e. acetone, ethanol, propan-2-ol and water). Such features, due to specific interactions between the potential analyte vapors and the functionalized surface of NCs, can effectively be addressed in a controlled and reproducible way, thus offering original opportunities for designing innovative chemical sensors.  相似文献   

2.
Nanocomposites (NCs) that are made magnetically responsive in controlled conditions attract continuing interest for their added magnetic properties. In this study, we report on the preparation and full characterization of a multifunctional NC composed of magnetic γ-Fe(2)O(3) nanoparticles (NPs) covalently attached to the surface of polyaminated (polyNH(2)) poly(2,6-di-pyrrol-1-yl-hexanoic acid) (pDPL) nanotubes (NTs). Such a hybrid conducting polymer iron oxide maghemite γ-Fe(2)O(3)@pDPL NC built specifically on covalent bonding has never been reported. The maghemite γ-Fe(2)O(3) NPs were prepared using an innovative ultrasound-assisted Ce(3+) doping process, resulting in polycarboxylation of the NP surface useful for control of aggregation and derivatization of functionality. The second component of the NC, i.e. polyNH(2)-modified pDPL NTs, was prepared from an acid functional pyrrole species followed by amine modification. The resulting innovative γ-Fe(2)O(3)@pDPL NC can be viewed as a multifunctional nanomaterial since it possesses both types of derivatization, i.e. polyCOOH (NPs) and polyNH(2) (NTs) combined with magnetic responsivity.  相似文献   

3.
Formation of hybrid Ag-TiO(2) nanocrystals (NCs) in which Ag clusters are uniformly deposited on individual TiO(2) NC surface has been achieved by using hydrophobic surfactant-capped TiO(2) NCs in combination with a photodeposition technique. The population of Ag clusters on the individual TiO(2) NC surface can be controlled by the degree of hydrophobicity (e.g., the number of vacant sites) on the TiO(2) NC surface while their size may be altered simply by varying irradiation time. A reversible change in color of the resulting hybrid Ag-TiO(2) NCs is induced by alternating UV light and visible-light illumination; however, the size and population of Ag clusters on TiO(2) NCs are almost unchanged. Furthermore, these materials also exhibit much higher photocatalytic performance as compared to that of Ag supported on commercial TiO(2)-P25.  相似文献   

4.
Oleic acid (OA) and/or oleylamine (OAm) are generally used as the surface ligands for stabilization of inorganic nanocrystals (NCs). The hydrophobic and inert surface of the NCs limits their applications such as in biomedical areas. Hence, surface modifications are essential in many physical and chemical processes. Here, a facile and versatile strategy is reported for the modification of NCs by ultraviolet‐induced thiol–ene chemistry, in which thiol‐terminated poly(ethylene glycol) (HS? PEG) and its derivatives can react directly with double bonds in OA/OAm ligands to form covalent linking within one step. Through this strategy, various hydrophobic NCs with different compositions and morphologies are able to be transferred into water combining with functionalization of active groups. As a proof‐of‐concept, this strategy is successfully used to construct a sensor for detecting avidin based on upconverting luminescence analysis. Therefore, this strategy provides a new tool for designing and tuning the surface properties of NCs for different applications.  相似文献   

5.
Nanocapsules (NCs) are submicron-sized core shell systems which present important advantages such as improvement of drug efficacy and bioavailability, prevention of drug degradation, and provision of controlled-release delivery. The available methods for NC production require expensive recovery and purification steps which compromised the morphology of NCs. Industrial applications of NCs have been avoided due to the aforementioned issues. In this study, we developed a new method based on a modified self-microemulsifying drug delivery system (SMEDDS) for in situ NCs production within the gastrointestinal tract. This new methodology does not require purification and recovery steps and can preserve the morphology and the functionality of NCs. The in situ formed NCs of Eudragit® RL PO were compared with nanospheres (NEs) in order to obtain evidence of their core-shell structure. NCs presented a spherical morphology with a size of 126.2?±?13.1?nm, an ibuprofen encapsulation efficiency of 31.3% and a zeta-potential of 37.4?mV. Additionally, NC density and release profile (zero order) showed physical evidence of the feasibility of NCs in situ creation.  相似文献   

6.
Alkyl‐terminated silicon nanocrystals (Si NCs) are synthesized at room temperature by hydride reduction of silicon tetrachloride (SiCl4) within inverse micelles. Highly monodisperse Si nanocrystals with average diameters ranging from 2 to 6 nm are produced by variation of the cationic quaternary ammonium salts used to form the inverse micelles. Transmission electron microscopy imaging shows that the NCs are highly crystalline, while FTIR spectra confirm that the NCs are passivated by covalent attachment of alkanes, with minimal surface oxidation. UV‐vis absorbance and photoluminescence spectroscopy show significant quantum confinement effects, with moderate absorption in the UV spectral range, and a strong blue emission with a marked dependency on excitation wavelength. The photoluminescence quantum yield (Φ) of the Si NCs exhibits an inverse relationship with the mean NC diameter, with a maximum of 12% recorded for 2 nm NCs.  相似文献   

7.
金属有机骨架材料是由金属离子与有机配体通过自组装过程杂化生成的一类具有周期性多维网状结构的多孔材料,在催化、传感、气体储存和载药等方面均表现出了优异的性能。采用一种新的实验方法(超声-搅拌法)并通过优化反应条件制备了粒径在300nm以下的ZIF-90纳米材料,利用傅里叶红外光谱(FTIR)、粉末X射线衍射(XRD)确定了金属有机骨架的结构,利用扫描电子显微镜(SEM)确定了材料的形貌和粒径。ZIF-90纳米药物载体装载和释放抗癌药物5-氟尿嘧啶的实验结果表明,该材料装载药物的能力最高可达1.245g/g,药物缓释时长达15h,释放率达到95%以上。该药物载体在不同pH值下的稳定性实验结果表明,该药物载体可在接近肿瘤细胞的酸性条件下通过骨架坍塌的方式快速释放药物,具有肿瘤靶向传递药物的能力。  相似文献   

8.
金属有机骨架材料是由金属离子与有机配体通过自组装过程杂化生成的一类具有周期性多维网状结构的多孔材料,在催化、传感、气体储存和载药等方面均表现出了优异的性能.采用一种新的实验方法(超声-搅拌法)并通过优化反应条件制备了粒径在300 nm以下的ZIF-90纳米材料,利用傅里叶红外光谱(FTIR)、粉末X射线衍射(XRD)确定了金属有机骨架的结构,利用扫描电子显微镜(SEM)确定了材料的形貌和粒径.ZIF-90纳米药物载体装载和释放抗癌药物5-氟尿嘧啶的实验结果表明,该材料装载药物的能力最高可达1.245 g/g,药物缓释时长达15h,释放率达到95%以上.该药物载体在不同pH值下的稳定性实验结果表明,该药物载体可在接近肿瘤细胞的酸性条件下通过骨架坍塌的方式快速释放药物,具有肿瘤靶向传递药物的能力.  相似文献   

9.
Zhang H  Hu B  Sun L  Hovden R  Wise FW  Muller DA  Robinson RD 《Nano letters》2011,11(12):5356-5361
A novel method is reported to create inorganically connected nanocrystal (NC) assemblies for both II-VI and IV-VI semiconductors by removing surfactant ligands using (NH4)2S. This surface modification process differs from ligand exchange methods in that no new surfactant ligands are introduced and the post-treated NC surfaces are nearly bare. The detailed mechanism study shows that the high reactivity between (NH4)2S and metal-surfactant ligand complexes enables the complete removal of surfactant ligands in seconds and converts the NC metal-rich shells into metal sulfides. The post-treated NCs are connected through metal-sulfide bonding and form a larger NCs film assembly, while still maintaining quantum confinement. Such "connected but confined" NC assemblies are promising new materials for electronic and optoelectronic devices.  相似文献   

10.
Targeted drug delivery using functionalized nanocarriers (NCs) is a strategy in therapeutic and diagnostic applications. In this paper we review the recent development of models at multiple length and time scales and their applications to targeting of antibody functionalized nanocarriers to antigens (receptors) on the endothelial cell (EC) surface. Our mesoscale (100 nm-1 μm) model is based on phenomenological interaction potentials for receptor-ligand interactions, receptor-flexure and resistance offered by glycocalyx. All free parameters are either directly determined from independent biophysical and cell biology experiments or estimated using molecular dynamics simulations. We employ a Metropolis Monte Carlo (MC) strategy in conjunction with the weighted histogram analysis method (WHAM) to compute the free energy landscape (potential of mean force or PMF) associated with the multivalent antigen-antibody interactions mediating the NC binding to EC. The binding affinities (association constants) are then derived from the PMF by computing absolute binding free energy of binding of NC to EC, taking into account the relevant translational and rotational entropy losses of NC and the receptors. We validate our model predictions by comparing the computed binding affinities and PMF to a wide range of experimental measurements, including in vitro cell culture, in vivo endothelial targeting, atomic force microscopy (AFM), and flow chamber experiments. The model predictions agree closely and quantitatively with all types experimental measurements. On this basis, we conclude that our computational protocol represents a quantitative and predictive approach for model driven design and optimization of functionalized NCs in targeted vascular drug delivery.  相似文献   

11.
The inter-nanocrystal (NC) distance,necking degree,ordering level,and NC surface ligands all affect the electronic and optoelectronic properties of NC solids.Herein,we introduce a unique PbS structure of necking percolative superlattices to exclude the morphological factors and study the effect of ligands on the NC properties.X-ray photoelectron spectroscopy data indicate that 1,2-ethanedithiol (EDT),oxalic acid,mercaptopropionic acid,and NH4SCN (SCN)ligands were attached to the surface of NCs by substrate-supported ligand exchange.Field-effect transistors were tested and photodetector measurements were performed to compare these NC solids.An SCN-treated film had the highest mobility and responsivity under high-power intensity irradiation owing to its high carrier density,whereas an EDT-treated film had the lowest mobility,photocurrent,and dark current.These findings introduce new avenues for choosing suitable ligands for NC applications.  相似文献   

12.
Most practical materials are held together by covalent bonds, which are irreversible. Materials based on noncovalent interactions can undergo reversible self-assembly, which offers advantages in terms of fabrication, processing and recyclability, but the majority of noncovalent systems are too fragile to be competitive with covalent materials for practical applications, despite significant attempts to develop robust noncovalent arrays. Here, we report nanostructured supramolecular membranes prepared from fibrous assemblies in water. The membranes are robust due to strong hydrophobic interactions, allowing their application in the size-selective separation of both metal and semiconductor nanoparticles. A thin (12 μm) membrane is used for filtration (~5 nm cutoff), and a thicker (45 μm) membrane allows for size-selective chromatography in the sub-5 nm domain. Unlike conventional membranes, our supramolecular membranes can be disassembled using organic solvent, cleaned, reassembled and reused multiple times.  相似文献   

13.
We report on preparation process and optical characterization of a nanocomposite material obtained dispersing colloidal semiconductor nanocrystals (NCs), namely CdS and CdSe@ZnS core-shell system in poly(methyl methacrylate) (PMMA). Such method allows a large flexibility on nanocrystal materials and on the choice of the polymer characteristics. Nanocomposite thin films were extensively investigated by means optical and morphological techniques. The effects on NC composition, concentration, size, and surface chemistry on the spectroscopical and structural behaviour of the nanocomposite properties were studied. The NC size dependent optical properties of the nanocomposites are mainly accounted by the NC composition and size, while the morphology of the films is explained on the base of the NC surface characteristics and their concentration in the nanocomposites.  相似文献   

14.
Organic surfactant controls the synthesis of nanocrystals (NCs) with uniform size and morphology by attaching on the surface of NCs and further facilitates their assembly into ordered superstructure, which produces versatile functional nanomaterials for practical applications. It is essential to directly resolve the surfactant molecules on the surface of NCs to improve the understanding of surface chemistry of NCs. However, the imaging resolution and contrast are insufficient for a single molecule of organic surfactant on NCs. In this work, direct characterization of organic surfactant on CeO2 NCs is conducted by using the state‐of‐the‐art aberration corrected scanning transmission electron microscopy (STEM) imaging and electron energy loss spectra (EELS) techniques. The explicit evidence for the existence and distribution of organic surfactant on CeO2 NCs are obtained on the atomic scale by EELS elemental mapping. Besides, STEM imaging parameters are systematically adjusted and optimized for the direct imaging of a single molecular chain of organic surfactant on CeO2 NCs. Such direct visualization of organic surfactant molecule on the surface of NCs can be a significant step forward in the fields of nanomaterials surface chemistry and materials characterization.  相似文献   

15.
The design and synthesis of a novel reduction‐sensitive, robust, and biocompatible vesicle (SSCB[6]VC) are reported, which is self‐assembled from an amphiphilic cucurbit[6]uril (CB[6]) derivative that contains disulfide bonds between hexaethylene glycol units and a CB[6] core. The remarkable features of SSCB[6]VC include: 1) facile, non‐destructive, non‐covalent, and modular surface modification using exceptionally strong host–guest chemistry; 2) high structural stability; 3) facile internalization into targeted cells by receptor‐mediated endocytosis, and 4) efficient triggered release of entrapped drugs in a reducing environment such as cytoplasm. Furthermore, a significantly increased cytotoxicity of the anticancer drug doxorubicin to cancer cells is demonstrated using doxorubicin‐loaded SSCB[6]VC, the surface of which is decorated with functional moieties such as a folate–spermidine conjugate and fluorescein isothiocyanate–spermidine conjugate as targeting ligand and fluorescence imaging probe, respectively. SSCB[6]VC with such unique features can be used as a highly versatile multifunctional platform for targeted drug delivery, which may find useful applications in cancer therapy. This novel strategy based on supramolecular chemistry and the unique properties of CB[6] can be extended to design smart multifunctional materials for biomedical applications including gene delivery.  相似文献   

16.
Nanoparticle-based photonic explorers have been developed for intracellular sensing and photodynamic therapy (PDT). The design employs nanoparticles made of various matrices as multifunctional nanoplatforms, loading active components by encapsulation or covalent attachment. The nanoplatform for biosensing has been successfully applied to intracellular measurements of important ionic and molecular species. The nanoplatform for PDT has shown high therapeutic efficacy in a rat 9L gliosarcoma model. Specifically, a multifunctional nanoplatform that encompasses magnetic resonance imaging (MRI) and PDT agents inside, as well as targeting ligands on the surface, has been developed and applied in vivo, resulting in much improved MRI contrast enhancement and PDT efficacy.  相似文献   

17.
Lu Z  Gao C  Zhang Q  Chi M  Howe JY  Yin Y 《Nano letters》2011,11(8):3404-3412
We present a general process that allows convenient production of multifunctional composite particles by direct self-assembly of hydrophobic nanoparticles on host nanostructures containing high-density surface thiol groups. Hydrophobic nanoparticles of various compositions and combinations can be directly assembled onto the host surface through the strong coordination interactions between metal cations and thiol groups. The resulting structures can be further conveniently overcoated with a layer of normal silica to stabilize the assemblies and render them highly dispersible in water for biomedical applications. As the entire fabrication process does not involve complicated surface modification procedures, the hydrophobic ligands on the nanoparticles are not disturbed significantly so that they retain their original properties such as highly efficient luminescence. Many complex composite nanostructures with tailored functions can be efficiently produced by using this versatile approach. For example, multifunctional nonspherical nanostructures can be efficiently produced by using mercapto-silica coated nano-objects of arbitrary shapes as hosts for immobilizing functional nanoparticles. Multilayer structures can also be achieved by repeating the mercapto-silica coating and nanoparticle immobilization processes. Such assembly approach will provide the research community a highly versatile, configurable, scalable, and reproducible process for the preparation of various multifunctional structures.  相似文献   

18.
We report here combined quasi-hydrostatic high-pressure small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) studies on faceted 3D supercrystals (SCs) self-assembled from colloidal 7.0 nm spherical PbS nanocrystals (NCs). Diamond anvil cell (DAC) SAXS experiments in the pressure range from ambient to 12.5 GPa revealed nearly perfect structural stability of the SCs, with face-centered cubic organization of the NCs. Pressure-induced ordering (annealing effect) of the superstructure was observed. The ambient pressure bulk modulus of the SCs was calculated to be ~5 GPa for compression and ~14.5 GPa for decompression from fitting of Vinet and Birch-Murnaghan equations of state. XRD measurements revealed strong preferential crystallographic orientation of the NCs through all phase transformations to as high as 55 GPa without any indication of NC sintering. The first phase transition pressure of the NCs was found between 8.1 and 9.2 GPa and proceeds through homogeneous nucleation. Bulk modulus of PbS NCs was calculated to be ~51 GPa based on fitting to the equations of state (K(PbS,bulk) ~ 51-57 GPa). Closest surface-to-surface distance between the NCs in the SCs was calculated based on combined XRD and SAXS data, to reversibly tune from ~1.56 nm to ~0.9-0.92 nm and back to ~1.36 nm in the ambient-12.5 GPa-ambient pressure cycle. The bulk modulus of the ligand matrix was extrapolated to be ~2.2-2.95 GPa. These results show a general method of tuning NC interactions in packed nanoparticle solids.  相似文献   

19.
Xu S  Wang C  Zhang H  Wang Z  Yang B  Cui Y 《Nanotechnology》2011,22(31):315703
pH-sensitive photoluminescence (PL) is an important property of aqueous nanocrystals (NCs) towards NCs-based intelligent applications. Previous works mainly focused on the effect of pH during NC growth process on PL of the aqueous NCs. The effect of pH during application process on PL of as-prepared NCs is still not fully understood. In this work, we brought out a general mechanism for the pH-sensitive PL behaviors of as-prepared aqueous CdTe NCs capped by aqueous thiol ligands, such as carboxylic-acid-terminated 3-mercaptopropionic acid (MPA) and thioglycolic acid (TGA) ligands, hydroxyl-terminated 1-thioglycerol (TG) ligands and amine-terminated 2-mercaptoethylamine (MA) ligands. A major contribution of this work is finding the key role of ligand terminal groups in the diffuse process of free Cd-ligand complexes toward NCs. This terminal group effect is the main reason for PL alteration of NCs during pH adjustment process. Besides the terminal group effect, PL of aqueous NCs is also affected by the aggregation effect, the thiol group effect and the counter ion effect. These effects make different contributions to PL of NCs at different pH ranges. By using this mechanism, we successfully explained the complex pH-sensitive PL behaviors of MPA, TGA, TG and MA-capped CdTe NCs.  相似文献   

20.
In this project, TiO2@ZnO nanoparticles core–shell nanostructured and titanium dioxide@ mesoporous zinc oxide–graphene oxide (TiO2@ZnO–GO) hybrid nanocomposites as controlled targeted drug delivery systems were synthesized by a facile sono-chemical method. We prepared a novel mesoporous and core–shell structure as a drug nanocarrier (NCs) for the loading and pH-responsive characteristics of the chemotherapeutic curcumin. The structure, surface charge, and surface morphology of NCs were studied using with X-ray diffraction, Fourier transform infrared spectroscopy, dynamic light scattering, brunauer–emmett–teller, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The SEM and TEM images of NCs show the uniform hexagonal mesoporous morphology with average grain size of about ~ 190 nm. The drug loading was very high about 16 and 19 for TiO2@ZnO and TiO2@ZnO–GO, respectively. The NCs showed pH-dependent drug release behavior. Drug release from TiO2@ZnO–GO in neutral pH were higher than in acidic medium, due to anionic charge of GO nanosheet. MTT assay results showed that the curcumin-loaded NCs showed significant toxicity due to which cell viability reduced to below 50% at 140 μg/mL concentration, thereby confirming its anticancer effects. The goal of this study is the application of water-dispersed TiO2@ZnO–GO with pH-dependent release properties for design a new drug delivery carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号