首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
Monolayers of transition metal dichalcogenides (TMDCs) have attracted a great interest for post‐silicon electronics and photonics due to their high carrier mobility, tunable bandgap, and atom‐thick 2D structure. With the analogy to conventional silicon electronics, establishing a method to convert TMDC to p‐ and n‐type semiconductors is essential for various device applications, such as complementary metal‐oxide‐semiconductor (CMOS) circuits and photovoltaics. Here, a successful control of the electrical polarity of monolayer WSe2 is demonstrated by chemical doping. Two different molecules, 4‐nitrobenzenediazonium tetrafluoroborate and diethylenetriamine, are utilized to convert ambipolar WSe2 field‐effect transistors (FETs) to p‐ and n‐type, respectively. Moreover, the chemically doped WSe2 show increased effective carrier mobilities of 82 and 25 cm2 V?1s?1 for holes and electrons, respectively, which are much higher than those of the pristine WSe2. The doping effects are studied by photoluminescence, Raman, X‐ray photoelectron spectroscopy, and density functional theory. Chemically tuned WSe2 FETs are integrated into CMOS inverters, exhibiting extremely low power consumption ( ≈ 0.17 nW). Furthermore, a p‐n junction within single WSe2 grain is realized via spatially controlled chemical doping. The chemical doping method for controlling the transport properties of WSe2 will contribute to the development of TMDC‐based advanced electronics.  相似文献   

2.
p–n junctions play an important role in modern semiconductor electronics and optoelectronics, and field‐effect transistors are often used for logic circuits. Here, gate‐controlled logic rectifiers and logic optoelectronic devices based on stacked black phosphorus (BP) and tungsten diselenide (WSe2) heterojunctions are reported. The gate‐tunable ambipolar charge carriers in BP and WSe2 enable a flexible, dynamic, and wide modulation on the heterojunctions as isotype (p–p and n–n) and anisotype (p–n) diodes, which exhibit disparate rectifying and photovoltaic properties. Based on such characteristics, it is demonstrated that BP–WSe2 heterojunction diodes can be developed for high‐performance logic rectifiers and logic optoelectronic devices. Logic optoelectronic devices can convert a light signal to an electric one by applied gate voltages. This work should be helpful to expand the applications of 2D crystals.  相似文献   

3.
In this study, high-performance multilayer WSe2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type control in multilayer WSe2 FET devices with Cr/Au contacts is initially demonstrated by modulating the WSe2 thickness. The carrier type evolves with increasing WSe2 channel thickness, being p-type, ambipolar, and n-type at thicknesses <3, ~4, and >5 nm, respectively. The thickness-dependent carrier type is attributed to changes in the bandgap of WSe2 as a function of the thickness and the carrier band offsets relative to the metal contacts. Furthermore, we present a strong hole carrier doping effect via remote oxygen plasma treatment. It non-degenerately converts n-type characteristics into p-type and enhances field-effect hole mobility by three orders of magnitude. This work demonstrates progress towards the realization of high-performance multilayer WSe2 FETs with carrier type control, potentially extendable to other transition metal dichalcogenides, for future electronic and optoelectronic applications.
  相似文献   

4.
The interfacing of 2D materials (2DMs) with photochromic molecules provides an efficient solution to reversibly modulate their outstanding electronic properties and offers a versatile platform for the development of multifunctional field-effect transistors (FETs). Herein, optically switchable multilevel high-mobility FETs based on few-layer ambipolar WSe2 are realized by applying on its surface a suitably designed bicomponent diarylethene (DAE) blend, in which both hole and electron transport can be simultaneously modulated for over 20 cycles. The high output current modulation efficiency (97% for holes and 52% for electrons) ensures 128 distinct current levels, corresponding to a data storage capacity of 7 bit. The device is also implemented on a flexible and transparent poly(ethylene terephthalate) substrate, rendering 2DM/DAE hybrid structures promising candidates for flexible multilevel nonvolatile memories.  相似文献   

5.

WSe2 is thought to be one of the best emerging p-type transition metal dichalcogenide (TMD) materials for potential low-power complementary metal oxide semiconductor (CMOS) circuit applications. However, the contact barrier and the interface quality hinder the performance of p-type field effect transistors (FETs) with WSe2 films. In this work, metals with different work functions—Pd, Pt, and Ag—were systematically investigated as contacts for WSe2 to decrease the contact resistances at source/drain electrodes and potentially improve transistor performance. Optimized p-type multilayer WSe2 FETs with Pd contacts were successfully fabricated, and excellent electrical characteristics were obtained: a hole mobility of 36 cm2V?1 s?1; a high on/off ratio, over 106; and a record low sub-threshold swing, SS?=?95 mV/dec, which may be attributed to the small Schottky barrier height of 295 meV between Pd and WSe2, and strong Fermi-level pinning near the top of the valence band at the interface. Finally, a full-functional CMOS inverter was also demonstrated, consisting of a p-type WSe2 FET together with a normal n-type MoS2 FET. This confirmed the potential of TMD FETs in future low-power CMOS digital circuit applications.

  相似文献   

6.
Hardware implementation of artificial synapses/neurons with 2D solid‐state devices is of great significance for nanoscale brain‐like computational systems. Here, 2D MoS2 synaptic/neuronal transistors are fabricated by using poly(vinyl alcohol) as the laterally coupled, proton‐conducting electrolytes. Fundamental synaptic functions, such as an excitatory postsynaptic current, paired‐pulse facilitation, and a dynamic filter for information transmission of biological synapse, are successfully emulated. Most importantly, with multiple input gates and one modulatory gate, spiking‐dependent logic operation/modulation, multiplicative neural coding, and neuronal gain modulation are also experimentally demonstrated. The results indicate that the intriguing 2D MoS2 transistors are also very promising for the next‐generation of nanoscale neuromorphic device applications.  相似文献   

7.
Van der Waals (vdW) heterostructures have received intense attention for their efficient stacking methodology with 2D nanomaterials in vertical dimension. However, it is still a challenge to scale down the lateral size of vdW heterostructures to the nanometer and make proper contacts to achieve optimized performances. Here, a carbon‐nanotube‐confined vertical heterostructure (CCVH) is employed to address this challenge, in which 2D semiconductors are asymmetrically sandwiched by an individual metallic single‐walled carbon nanotube (SWCNT) and a metal electrode. By using WSe2 and MoS2, the CCVH can be made into p‐type and n‐type field effect transistors with high on/off ratios even when the channel length is 3.3 nm. A complementary inverter was further built with them, indicating their potential in logic circuits with a high integration level. Furthermore, the Fermi level of SWCNTs can be efficiently modulated by the gate voltage, making it competent for both electron and hole injection in the CCVHs. This unique property is shown by the transition of WSe2 CCVH from unipolar to bipolar, and the transition of WSe2/MoS2 from p–n junction to n–n junction under proper source–drain biases and gate voltages. Therefore, the CCVH, as a member of 1D/2D mixed heterostructures, shows great potentials in future nanoelectronics and nano‐optoelectronics.  相似文献   

8.
Recently, as applications based on triboelectricity have expanded, understanding the triboelectric charging behavior of various materials has become essential. This study investigates the triboelectric charging behaviors of various 2D layered materials, including MoS2, MoSe2, WS2, WSe2, graphene, and graphene oxide in a triboelectric series using the concept of a triboelectric nanogenerator, and confirms the position of 2D materials in the triboelectric series. It is also demonstrated that the results are obviously related to the effective work functions. The charging polarity indicates the similar behavior regardless of the synthetic method and film thickness ranging from a few hundred nanometers (for chemically exfoliated and restacked films) to a few nanometers (for chemical vapor deposited films). Further, the triboelectric charging characteristics could be successfully modified via chemical doping. This study provides new insights to utilize 2D materials in triboelectric devices, allowing thin and flexible device fabrication.  相似文献   

9.
We report on the fabrication and performance of pentacene-based split-gate field effect transistors (FETs) on doped Si/SiO2 substrates. Several transistors with split gate structures were fabricated and demonstrated AND logic functionality. The transistor’s functionality was controlled by applying either 0 or − 10 V to each of the gate electrodes. When − 10 V was simultaneously applied to both gates, the transistor was conductive (ON), while any other combination of gate voltages rendered the transistor highly resistive (OFF). A significant advantage of this device is that AND logic devices with multiple inputs can be built using a single pentacene channel with multiple gates. The p-type carrier mobility of charge within the pentacene active layer of these transistors was about 10− 5 cm2/V-s. We attribute the low value of mobility primarily to the sharp contours of the pentacene film between the drain and the source contacts and to defects in the pentacene film. The average charge density was 1.4 × 1012 holes/cm2. Despite low mobility, the devices operated at lower drain-source (VDS) and gate-source (VGS) voltages as compared with previously reported pentacene based FETs.  相似文献   

10.
Vertical integration of 2D layered materials to form van der Waals heterostructures (vdWHs) offers new functional electronic and optoelectronic devices. However, the mobility in vertical carrier transport in vdWHs of vertical field‐effect transistor (VFET) is not yet investigated in spite of the importance of mobility for the successful application of VFETs in integrated circuits. Here, the mobility in VFET of vdWHs under different drain biases, gate biases, and metal work functions is first investigated and engineered. The traps in WSe2 are the main source of scattering, which influences the vertical mobility and three distinct transport mechanisms: Ohmic transport, trap‐limited transport, and space‐charge‐limited transport. The vertical mobility in VFET can be improved by suppressing the trap states by raising the Fermi level of WSe2. This is achieved by increasing the injected carrier density by applying a high drain voltage, or decreasing the Schottky barrier at the graphene/WSe2 and metal/WSe2 junctions by applying a gate bias and reducing the metal work function, respectively. Consequently, the mobility in Mn vdWH at +50 V gate voltage is about 76 times higher than the initial mobility of Au vdWH. This work enables further improvements in the VFET for successful application in integrated circuits.  相似文献   

11.
Currently 2D crystals are being studied intensively for use in future nanoelectronics, as conventional semiconductor devices face challenges in high power consumption and short channel effects when scaled to the quantum limit. Toward this end, achieving barrier‐free contact to 2D semiconductors has emerged as a major roadblock. In conventional contacts to bulk metals, the 2D semiconductor Fermi levels become pinned inside the bandgap, deviating from the ideal Schottky–Mott rule and resulting in significant suppression of carrier transport in the device. Here, MoS2 polarity control is realized without extrinsic doping by employing a 1D elemental metal contact scheme. The use of high‐work‐function palladium (Pd) or gold (Au) enables a high‐quality p‐type dominant contact to intrinsic MoS2, realizing Fermi level depinning. Field‐effect transistors (FETs) with Pd edge contact and Au edge contact show high performance with the highest hole mobility reaching 330 and 432 cm2 V?1 s?1 at 300 K, respectively. The ideal Fermi level alignment allows creation of p‐ and n‐type FETs on the same intrinsic MoS2 flake using Pd and low‐work‐function molybdenum (Mo) contacts, respectively. This device acts as an efficient inverter, a basic building block for semiconductor integrated circuits, with gain reaching 15 at VD = 5 V.  相似文献   

12.
2D semiconductor materials are being considered for next generation electronic device application such as thin‐film transistors and complementary metal–oxide–semiconductor (CMOS) circuit due to their unique structural and superior electronics properties. Various approaches have already been taken to fabricate 2D complementary logics circuits. However, those CMOS devices mostly demonstrated based on exfoliated 2D materials show the performance of a single device. In this work, the design and fabrication of a complementary inverter is experimentally reported, based on a chemical vapor deposition MoS2 n‐type transistor and a Si nanomembrane p‐type transistor on the same substrate. The advantages offered by such CMOS configuration allow to fabricate large area wafer scale integration of high performance Si technology with transition‐metal dichalcogenide materials. The fabricated hetero‐CMOS inverters which are composed of two isolated transistors exhibit a novel high performance air‐stable voltage transfer characteristic with different supply voltages, with a maximum voltage gain of ≈16, and sub‐nano watt power consumption. Moreover, the logic gates have been integrated on a plastic substrate and displayed reliable electrical properties paving a realistic path for the fabrication of flexible/transparent CMOS circuits in 2D electronics.  相似文献   

13.
As unique building blocks for next-generation optoelectronics, high-quality 2D p–n junctions based on semiconducting transition metal dichalcogenides (TMDs) have attracted wide interest, which are urgent to be exploited. Herein, a novel and facile electron doping of WSe2 by cetyltrimethyl ammonium bromide (CTAB) is achieved for the first time to form a high-quality intramolecular p–n junction with superior optoelectronic properties. Efficient manipulation of charge carrier type and density in TMDs via electron transfer between Br in CTAB and TMDs is proposed theoretically by density functional theory (DFT) calculations. Compared with the intrinsic WSe2 photodetector, the switching light ratio (Ilight/Idark) of the p–n junction device can be enhanced by 103, and the temporal response is also dramatically improved. The device possesses a responsivity of 30 A W−1, with a specific detectivity of over 1011 Jones. In addition, the mechanism of charge transfer in CTAB-doped 2D WSe2 and WS2 are investigated by designing high-performance field effect transistors. Besides the scientific insight into the effective manipulation of 2D materials by chemical doping, this work presents a promising applicable approach toward next-generation photoelectronic devices with high efficiency.  相似文献   

14.
The controlled functionalization of semiconducting 2D materials (2DMs) with photoresponsive molecules enables the generation of novel hybrid structures as active components for the fabrication of high‐performance multifunctional field‐effect transistors (FETs) and memories. This study reports the realization of optically switchable FETs by decorating the surface of the semiconducting 2DMs such as WSe2 and black phosphorus with suitably designed diarylethene (DAE) molecules to modulate their electron and hole transport, respectively, without sacrificing their pristine electrical performance. The efficient and reversible photochemical isomerization of the DAEs between the open and the closed isomer, featuring different energy levels, makes it possible to generate photoswitchable charge trapping levels, resulting in the tuning of charge transport through the 2DMs by alternating illumination with UV and visible light. The device reveals excellent data‐retention capacity combined with multiple and well‐distinguished accessible current levels, paving the way for its use as an active element in multilevel memories.  相似文献   

15.
Recently, anisotropic 2D materials, such as black phosphorus and rhenium disulfides (ReS2), have attracted a lot attention because of their unique applications on electronics and optoelectronics. In this work, the direct growth of high‐quality ReS2 atomic layers and nanoribbons has been demonstrated by using chemical vapor deposition (CVD) method. A possible growth mechanism is proposed according to the controlled experiments. The CVD ReS2‐based filed‐effect transistors (FETs) show n‐type semiconducting behavior with a current on/off ratio of ≈106 and a charge carrier mobility of ≈9.3 cm2 Vs−1. These results suggested that the quality of CVD grown ReS2 is comparable to mechanically exfoliated ReS2, which is also further supported by atomic force microscopy imaging, high‐resolution transmission electron microscopy imaging and thickness‐dependent Raman spectra. The study here indicates that CVD grown ReS2 may pave the way for the large‐scale fabrication of ReS2‐based high‐performance optoelectronic devices, such as anisotropic FETs and polarization detection.  相似文献   

16.
2D semiconductors are promising channel materials for field‐effect transistors (FETs) with potentially strong immunity to short‐channel effects (SCEs). In this paper, a grain boundary widening technique is developed to fabricate graphene electrodes for contacting monolayer MoS2. FETs with channel lengths scaling down to ≈4 nm can be realized reliably. These graphene‐contacted ultrashort channel MoS2 FETs exhibit superior performances including the nearly Ohmic contacts and excellent immunity to SCEs. This work provides a facile route toward the fabrication of various 2D material‐based devices for ultrascaled electronics.  相似文献   

17.
A systematic modulation of the carrier type in molybdenum ditelluride (MoTe2) field‐effect transistors (FETs) is described, through rapid thermal annealing (RTA) under a controlled O2 environment (p‐type modulation) and benzyl viologen (BV) doping (n‐type modulation). Al2O3 capping is then introduced to improve the carrier mobilities and device stability. MoTe2 is found to be ultrasensitive to O2 at elevated temperatures (250 °C). Charge carriers of MoTe2 flakes annealed via RTA at various vacuum levels are tuned between predominantly pristine n‐type ambipolar, symmetric ambipolar, unipolar p‐type, and degenerate‐like p‐type. Changes in the MoTe2‐transistor performance are confirmed to originate from the physical and chemical absorption and dissociation of O2, especially at tellurium vacancy sites. The electron branch is modulated by varying the BV dopant concentrations and annealing conditions. Unipolar n‐type MoTe2 FETs with a high on–off ratio exceeding 106 are achieved under optimized doping conditions. By introducing Al2O3 capping, carrier field effect mobilities (41 for holes and 80 cm2 V?1 s?1 for electrons) and device stability are improved due to the reduced trap densities and isolation from ambient air. Lateral MoTe2 p–n diodes with an ideality factor of 1.2 are fabricated using the p‐ and n‐type doping technique to test the superb potential of the doping method in functional electronic device applications.  相似文献   

18.
Two-dimensional (2D) materials have many promising applications, but their scalable production remains challenging. Herein, we develop a glue-assisted grinding exfoliation (GAGE) method in which the adhesive polymer acts as a glue to massively produce 2D materials with large lateral sizes, high quality, and high yield. Density functional theory simulation shows that the exfoliation mechanism involves the competition between the binding energy of selected polymers and the 2D materials which is larger than the exfoliation energy of the layered materials. Taking h-BN as an example, the GAGE produces 2D h-BN with an average lateral size of 2.18 μm and thickness of 3.91 nm. The method is also extended to produce various other 2D materials, including graphene, MoS2, WS2, Bi2O2Se, mica, vermiculite, and montmorillonite. Two representative applications of thus-produced 2D materials have been demonstrated, including 2D h-BN/polymer composites for insulating thermal conduction and 2D MoS2-based electrocatalysts for large-current-density hydrogen evolution, indicating the great potential of massively produced 2D materials.  相似文献   

19.
Band‐like transport behavior of H‐doped transition metal dichalcogenide (TMD) channels in field effect transistors (FET) is studied by conducting low‐temperature electrical measurements, where MoTe2, WSe2, and MoS2 are chosen for channels. Doped with H atoms through atomic layer deposition, those channels show strong n‐type conduction and their mobility increases without losing on‐state current as the measurement temperature decreases. In contrast, the mobility of unintentionally (naturally) doped TMD FETs always drops at low temperatures whether they are p‐ or n‐type. Density functional theory calculations show that H‐doped MoTe2, WSe2, and MoS2 have Fermi levels above conduction band edge. It is thus concluded that the charge transport behavior in H‐doped TMD channels is metallic showing band‐like transport rather than thermal hopping. These results indicate that H‐doped TMD FETs are practically useful even at low‐temperature ranges.  相似文献   

20.
2D semiconductors have shown great potential for application to electrically tunable optoelectronics. Despite the strong excitonic photoluminescence (PL) of monolayer transition metal dichalcogenides (TMDs), their efficient electroluminescence (EL) has not been achieved due to the low efficiency of charge injection and electron–hole recombination. Here, multioperation-mode light-emitting field-effect transistors (LEFETs) consisting of a monolayer WSe2 channel and graphene contacts coupled with two top gates for selective and balanced injection of charge carriers are demonstrated. Visibly observable EL is achieved with the high external quantum efficiency of ≈6% at room temperature due to efficient recombination of injected electrons and holes in a confined 2D channel. Further, electrical tunability of both the channel and contacts enables multioperation modes, such as antiambipolar, depletion,and unipolar regions, which can be utilized for polarity-tunable field-effect transistors and photodetectors. The work exhibits great potential for use in 2D semiconductor LEFETs for novel optoelectronics capable of high efficiency, multifunctions, and heterointegration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号