首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tensile properties and inhomogeneous deformation of coarse ferrite-martensite dual-phase steels containing 17–50% martensite were analysed. The stress of dual-phase steels at equal strain increased with increasing volume fraction of martensite, f, but the rate of increase was reduced after f=0.3. The strain hardening rate was dependent on f at small strains ( 0.03), however, it became independent of f at larger strains. It was found that the deformation of the dual-phase steels divided into three different stages when f was less than about 0.3. The concurrent in situ stress-strain states of ferrite, martensite and their composite, and the stress ratios and strain ratios between ferrite and martensite were evaluated by means of a new stress and strain partition theory. The martensite phase deformed plastically after the uniform strain for f < 0.25, while it was plastic before the uniform strain for f > 0.25. The theoretical analyses for inhomogeneous deformation implied that the volume-fraction dependence of the stress and the characteristics of the strain-hardening rate were influenced by the plastic deformation of martensite. Further, the in situ stress-strain curves of ferrite and martensite and the internal stresses at respective phases were calculated from the partitioned stresses and strains.  相似文献   

2.
Dual phase (DP) steels having a microstructure consists of a ferrite matrix, in which particles of martensite are dispersed, have received a great deal of attention due to their useful combination of high strength, high work hardening rate and ductility. In the present work, a microstructure based micromechanical model is developed to capture the deformation behavior, plastic strain localization and plastic instability of DP 590 steel. A microstructure based approach by means of representative volume element (RVE) is employed for this purpose. Dislocation based model is implemented to predict the flow behavior of the single phases. Plastic strain localization which arises due to incompatible deformation between the hard martensite and soft ferrite phases is predicted for DP 590 steel. Different failure modes arise from plastic strain localization in DP 590 steel are investigated on the actual microstructure by finite element method.  相似文献   

3.
The goal of this paper is to predict how the properties of the constituent phases and microstructure of dual phase steels (consisting of ferrite and martensite) influence their fracture resistance. We focus on two commercial low-carbon dual-phase (DP) steels with different ferrite/martensite phase volume fractions and properties. These steels exhibit similar flow behavior and tensile strength but different ductility. Our experimental observations show that the mechanism of ductile fracture in these two DP steels involves nucleation, growth and coalescence of micron scale voids. We thus employ microstructure-based finite element simulations to analyze the ductile fracture of these dual-phase steels. In the microstructure-based simulations, the individual phases of the DP steels are discretely modeled using elastic-viscoplastic constitutive relations for progressively cavitating solids. The flow behavior of the individual phases in both the steels are determined by homogenizing the microscale calibrated crystal plasticity constitutive relations from a previous study (Chen et al. in Acta Mater 65:133–149, 2014) while the damage parameters are determined by void cell model calculations. We then determine microstructural effects on ductile fracture of these steels by analyzing a series of representative volume elements with varying volume fractions, flow and damage behaviors of the constituent phases. Our simulations predict qualitative features of the ductile fracture process in good agreement with experimental observations for both DP steels. A ‘virtual’ DP microstructure, constructed by varying the microstructural parameters in the commercial steels, is predicted to have strength and ductile fracture resistance that is superior to the two commercial DP steels. Our simulations provide guidelines for improving the ductile fracture resistance of DP steels.  相似文献   

4.
Abstract— Fully reversed low cycle fatigue tests were carried out on 7 mm diameter cylindrical specimens of a dual phase steel treated to give five different microstructures, namely F—ferrite (+ little carbide particles), CF—continuous ferrite + 8.2% martensite, FM—49.1% ferrite + 50.9% martensite mixed structure, CM—continuous martensite + 22.4% ferrite and M—100% martensite. A finite element program was developed based on Eisenberg's cyclic plasticity theory and the low cycle stress-strain response of the steels with duplex phase microstructures was calculated from the low cyclic curves of the single ferrite (steel F) and martensite (steel M) phase. The experimental results show that fatigue performance of dual phase steel improves as martensite content is increased up to about 50%, thereafter it obviously deteriorates. During cyclic loading, the calculated plastic strain accumulated in ferrite is higher than that in martensite. Inhomogeneity of the plastic strain accumulation in steel CF is more pronounced than that in steel CM. In steel FM a relatively uniform strain distribution was found. Controlling the size of particle phase can result in an optimum strain distribution. Thus, the plastic deformation capability of the constituent phases can be enhanced leading to fatigue performance improvement. Crack initiation occurs easily at the ferrite/martensite interface with a coarse particle phase size, regardless of phase continuity. In steel CF, a crack initiates at the interface perpendicular to the stress axis and propagates in the ferrite matrix by deflecting around coarse martensite particles or by cutting fine martensite particles. In steel CM, a crack initiates at the interface along the stress axis and propagates in the martensite matrix through ferrite particles.  相似文献   

5.
Abstract

The deformation behaviour of the two phases of three plain carbon dual–phase steels after various treatments has been studied using a scanning electron microscope equipped with a tensile straining stage. The distribution of strains between the ferrite and martensite phases, as well as among the different grains of each phase, was observed to be inhomogeneous. The martensite/ferrite strain ratio, which defines the degree of uniformity of straining between the phases, depends on the microstructural parameters of the steels: it increases with increasing volume fraction of martensite, but decreases as the carbon content of the martensite increases. Tempering at various temperatures causes a decrease in the martensite/ferrite microhardness ratio and hence causes an increase in the strain ratio. The macroscopic strain of the specimen at which the martensite begins to deform was also found to be dependent on the microstructural parameters. Regions of applicability of the existing theories of the strength of dual–phase steels can be estimated according to the deformation condition of the martensite.

MST/235  相似文献   

6.
Dual phase (DP) steels with network and fibrous martensite were produced by intercritical annealing heat treatment cycles. Some of these steels were deformed at dynamic strain aging temperatures. Room temperature tensile tests of specimens deformed at 300 °C showed that both yield and ultimate tensile strengths for both morphologies increased, while total elongation decreased. Fatigue test results before and after high temperature deformation showed that dynamic strain aging has a stronger effect on fatigue properties of dual phase steels with fibrous martensite. Cracks in DP steels with fibrous martensite propagate in a tortuous path in soft ferrite phase, while they pass of both hard and soft phases in DP steels with network martensite.  相似文献   

7.
A new route to fabricate ultrafine grained (UFG) ferritic steel sheets without severe plastic deformation is proposed in this article. A low-carbon steel sheet with a duplex microstructure composed of ferrite and martensite was cold-rolled to a reduction of 91% in thickness, and then annealed at 620–700 °C. The microstructure obtained through the process with annealing temperatures below 700 °C was the UFG ferrite including fine cementite particles homogenously dispersed. The grain size of ferrite matrix changed from 0.49 to 1.0 μm depending on the annealing temperature. Dynamic tensile properties of the produced UFG steels were investigated. The obtained UFG ferrite–cementite steels without martensite phase showed high strain rate sensitivity in flow stress. The UFG ferritic steels are expected to have high potential to absorb crash energy when applied to automobile body.  相似文献   

8.
为研究冷却模式对热轧双相钢显微组织及断裂机制的影响,采用两段式(空冷+水冷)、连续式两种冷却方式,得到不同相比例和力学性能的热轧双相钢,轧后取样并在扫描电镜上进行原位拉伸实验.结果表明,两段式冷却模式得到的马氏体呈小岛状,而连续式冷却模式得到的马氏体呈块状,马氏体含量和形貌的不同导致两种冷却方式得到的双相钢力学性能存在差异.原位拉伸过程中,裂纹首先萌生于铁素体与夹杂物界面处,随着变形继续进行,在铁素体与马氏体界面处开始出现裂纹,当变形量进一步增大时,细小岛状马氏体始终不发生断裂,而块状马氏体在颈缩阶段发生断裂.  相似文献   

9.
The room temperature deformation characteristics of a duplex Fe-20Mn-9Al-0.6C steel with the reduced specific weight of 6.84 g/cm3 in the fully solutionized state were described in conjunction with the deformation mechanisms of its constituent phases. The phase fraction was insensitive to annealing temperature in the range of 800-1100 °C. The ferrite grain size was also nearly unaltered but the austenite grain size slightly increased with increasing annealing temperature. This revealed that there is little window to control the microstructure of the steel by annealing. The steel exhibited a good combination of strength over 800 MPa and ductility over 45% in the present annealing conditions. Ferrite was harder than austenite in this steel. Strain hardening of both phases was monotonic during tensile deformation, but the strain hardening exponent of austenite was higher than that of ferrite, indicating the better strain hardenability of austenite. In addition, the strain hardening exponent of austenite increased but that of ferrite remained unchanged with increasing annealing temperature. The overall strain hardening of the steel followed that of austenite. Considering element partitioning by annealing, the stacking fault energy of austenite of the steel was estimated as ∼70 mJ/m2. Even with the relatively high stacking fault energy, planar glide dominantly occurred in austenite. Neither strain induced martensite nor mechanical twins formed in austenite during tensile deformation. Ferrite exhibited the deformed microstructures typically observed in the wavy glide materials, i.e. dislocation cells. The mechanical properties of the present duplex steel were compared to those of advance high strength automotive steels recently developed.  相似文献   

10.
The correlations of the work-hardening exponent,n, with quenching temperature, martensite volume-fraction (MVF) and solute concentration in ferrite are discussed and derived for dual-phase steel. The flow stress of dual-phase steel at low strain is suggested to be expressed by the combination of the terms due to plastic deformation in ferrite and elastic deformation of martensite. Previous experimental results are compared with the behaviour suggested by this theoretical work. In addition, an expression for the work hardening exponents at moderate strains and at the onset of necking are also theoretically suggested.  相似文献   

11.
对X70管线钢进行临界区热处理,制备出四种铁素体/针状铁素体(PF/AF)体积分数不同的双相管线钢。用电子背散射衍射(EBSD)分析了PF含量对这种双相管线钢的晶粒尺寸、大角度与小角度晶界的比例以及几何必要位错密度(GND)的影响;通过Hollomon和修正C-J方程分析了这种钢的应力比与应变硬化指数(n值)的关系,以及不同PF体积分数双相管线钢的塑性变形和应变硬化的机理。结果表明,PF/AF双相管线钢的应变硬化能力几乎与应力比无关,而应变硬化指数与均匀延伸率表现出特定的线性关系。随着PF体积分数的提高,这种钢的颈缩点后移且应变硬化行为由两阶段向三阶段转变。PF体积分数的改变,对其第I和第II阶段的应变硬化能力有显著的影响。  相似文献   

12.
The microstructure and tensile properties of steels 15 and 15Mn2Nb after quenching from intercritical (γ + α) temperatures were studied. It was shown that steel 15 has an “island-type” dual-phase structure (ferrite plus martensite) after intercritical quenching, while the steel 15Mn2Nb has the “lamellar” structure with alternatively arranged ferrite and martensite needles. Such a lamellar dual-phase structure obviously has improved strength and ductility and is suggested as one of the effective methods in developing high strength dual-phase steels.  相似文献   

13.
An expression for the stress of martensite in dual-phase steel was developed, which shows the interdependence of the stress of martensite and strain hardening in the ferrite matrix and the contribution of microstructural variables (the volume fraction of martensite fm, ferrite grain size df, and martensite particle size dm). The onset of plastic deformation of martensite in dual-phase steel was predicted to depend on its yield strength and the microstructural variables, and this was verified by the modified Crussard-Jaoul analysis. It was found that for this dual-phase steel, refining the grain size and increasing fm increase the flow stress and raise the strain hardening rate at low strains, but little affect the strain hardening rate at high strains. The effect of the ferrite grain size on the flow stress of this dual-phase steel was found to obey the Hall-Petch relation, i.e. σ = σ0e + Kedf−1/2, where the Hall-Petch intersection σ0e and slope Ke are functions of strain, fm and dm. The effects of the plastic deformation of martensite and the microstructural variables on the strain hardening rate and the Hall-Petch behaviour were analysed in terms of the densities of statistically stored dislocations and geometrically necessary dislocations using the previously developed theoretical model.  相似文献   

14.
Abstract

A commercial type dual-phase steel has been heat treated to develop a conventional dual-phase structure and, by a double-quench heat treatment, a dual-phase structure with a small martensite island size. These specially heat treated materials together with the normalized material have been plastically deformed by rolling to a reduction of 98% (εt = 4·0). The tensile properties have been determined after deformation and correlated with the microstructure. It has been found that within the strain range εt = 0·5–1·5 the work hardening modulus is similar to that of pure iron. Over a narrow strain range little work hardening occurs but within the range εt = 2·5–4·0 the work hardening modulus is greater than that of ferrite. The increase in modulus seems to be associated with the plastic deformation of the martensite islands which, at the highest strains, give a fibre reinforcing effect. The results are discussed in relation to the work hardening mechanisms involved. It is concluded that changes in the ferrite grain size, established during the development of deformation bands at lower strains and subsequently deformed at higher strains, greatly influence the flow stress through a Hall-Petch relationship.

MST/241  相似文献   

15.
Numerical simulations enable the analysis of the stress and strain histories of bimetallic rolling mill rolls. The history of rolling mill rolls is simulated by thermo-mechanical metallurgical finite element code while considering two steps: post-casting cooling and subsequent tempering heat treatment. The model requires a notably large set of material parameters. For different phases and temperatures, Young modulus, yield limit and tangent plastic modulus are determined through compression tests. Rupture stresses and strains are obtained by tensile tests. Thermo-physical parameters are measured by such experimental methods as dilatometry, DSC (Differential Scanning Calorimetry) and Laser Flash methods. Such parameters as the transformation plasticity coefficients for the ferrite, pearlite and martensite phases are identified through an inverse method. From the simulation results, the profile of the stresses evolution at different critical times is presented. An analysis of the potential damage is proposed by comparing the predicted axial stress with rupture stresses. The perspective of the Ghosh and McClintock damage criteria is also investigated.  相似文献   

16.
A series of Fe---Mn---C alloys was quenched from 760° and 820°C. This treatment produced dual-phase microstructures in which the carbon contents of the martensite and ferrite phases were held constant while the percent martensite varied. The monotomic and cyclic properties of these steels were determined and the major influence on mechanical properties was found to be the percentage of martensite; both monotonic and cyclic stress levels increase linearly with martensite content. Carbon content of the phases also appears to play a role, particularly for cyclic properties. At constant martensite contents higher carbon levels result in better fatigue properties. Thus dual-phase steels with a higher alloy content (therefore able to be more slowly cooled resulting in higher carbon bearing martensite) may be preferable for cyclic applications.  相似文献   

17.
The development of present day and future vehicles is being driven by the need to simultaneously reduce mass and increase passenger and pedestrian safety. For this reason, the steel industry has developed strip steel grades with suitable properties, as required for meeting the demands placed on the automotive manufacturers. Two of these strip steel grades are the Dual Phase (DP) and the Transformation Induced Plasticity (TRIP) steels, which are thought to offer solutions for critical crash component criteria. Limited published information is available on the changes in microstructure of these novel strip steel grades at different rates of deformation.This paper examines the change in microstructure of a range of both commercial and experimental DP and TRIP strip steel grades, which were tensile tested at low (0.001 s 1) and very high strain rates (200 s 1). The DP and TRIP microstructures were characterised in terms of ferrite grain size, ferrite grain elongation and volume fraction of constituent phases. The specimens were examined following deformation and compared to the as-received condition to assess microstructural changes.This paper concentrates only on microstructural changes through dynamic tensile testing of DP and TRIP grades at low and high strain rates. The full crash performance data from the dynamic tensile tests and crushing of box sections is presented in a separate publication. [S. Oliver, G. Fourlaris and T.B. Jones, ‘Dual Phase versus TRIP strip steels: a comparison of dynamic properties for automotive crash performance’, Materials Science and Technology, 2006, (submitted for publication)].  相似文献   

18.
In this paper the acoustic emission behaviour during tensile tests of the materials DC06 and HCT600X is studied. Two steels with different characteristics (mild deep‐drawing steel DC06 and high‐strength steel HCT600X) are consciously chosen to show the influence of the material properties on the generated acoustic emissions. The acoustic emission behaviour and the corresponding signals differ clearly from each other. In addition, the effect of the strain rate as well as the rolling direction (0°, 90°) on the acoustic emission behaviour is investigated. Both parameters have a significant influence on the resulting acoustic emissions during tensile deformation. Furthermore, a new criterion based on the acoustic emission parameter FCOG (centroid frequency) for detection of damage beginning in dual‐phase steels is developed. The criterion supports the assumption that during tensile deformation of dual‐phase steels two failure mechanisms, ferrite/martensite interface decohesion and martensite phase fracture, exist.  相似文献   

19.
Abstract

Tension–compression cyclic deformation behaviour in dual-phase steels has been studied. Three different ferrite (α)–martensite (α′) microstructures, i.e. isolated α′-colonies dispersed in α-matrix (I), continuous α′ (C), and laminated α–α′ (L), were prepared by appropriate heat treatments, keeping the α′ volume fraction at ~0·3. The work hardening and the Bauschinger effect are found to be greater in microstructure C or L than in I when they are compared at an arbitrary forward (tension) prestrain level. An increase in the hardness of α′ enhances the Bauschinger effect and then narrows the stress–strain hysteresis loop. The stress evolved as a result of the Bauschinger stress (defined as the difference between forward prestress and backward (compression) 0·1% proof stress) is found to be almost independent of microstructure and hardness when it is compared at an arbitrarily fixed prestress level. The slip lines are very fine and relatively straight in microstructure C, but wavy in microstructure I. These findings are discussed from the standpoints of the accumulation of the average internal stress resulting from inhomogeneous plastic flow between two constituent phases and the plastic relaxation.

MST/382  相似文献   

20.
Notched and un-notched tensile specimens of fine grained commercial DP780 steel were deformed in uniaxial tension until fracture. Micro-texture analysis was performed by using an FE-SEM equipped with an EBSD detector and the data were analyzed to quantify orientation gradients within the microstructure of the deformed specimens in terms of Image Quality, Inverse Pole Figure and Taylor Factor map. High deformation ability of DP steels was found to be mostly due to such mechanisms as grain rotation, void creation and evolution, substructure formation within the ferrite grains and the highly plastic stretching of martensite during the deformation process. The true strain of martensite was measured up to 64% and 74% for the un-notched and notched specimens, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号