首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
This study investigates the effectiveness of steel fibers and minimum amount of stirrups on the shear response of various sized reinforced high-strength concrete (HSC) beams. For this, six large reinforced HSC beams with a shear span-to-depth ratio (a/d) of 3.2 were manufactured. Three of them contained 0.75% (by volume) steel fibers without stirrups as per ACI Committee 318, while the rest were reinforced with the minimum amount of stirrups without fibers. Test results indicate that, with increasing beam size, significantly lower shear strength was obtained for steel fiber-reinforced high-strength concrete (SFR-HSC) beams without stirrups, than for the plain HSC beams with stirrups. The inclusion of steel fibers effectively limited crack propagation, produced more diffused initial flexural cracks, and led to higher post-cracking stiffness, compared to plain HSC. On the other hand, the use of minimum stirrups gave better shear cracking behaviors than that of steel fibers, and effectively mitigated the size effect on shear strength. Therefore, a large decrease in shear strength, with an increase in the beam size, was only obtained for SFR-HSC beams without stirrups. A shear strength decrease of 129% was obtained by increasing the effective depth from 181 mm to 887 mm. The shear strengths of reinforced steel fiber-reinforced concrete beams were not accurately predicted by most previous prediction models. Therefore, a new shear strength formula, based on a larger dataset, that considers the size effect, is required.  相似文献   

2.
This paper presents experimental and analytical investigations on concrete beams reinforced with basalt fiber reinforced polymer (BFRP) and steel fibers without stirrups. Independent behaviour of BFRP reinforced beams and steel fiber reinforced beams were evaluated and the effect of combining BFRP bars and steel fiber was investigated in detail. It is found that combining steel fibers with BFRP could change the shear failure of BFRP reinforced beam to flexural failure. Further, the existing analytical models were reviewed and compared to predict the shear strength of both FRP reinforced and steel fiber reinforced beams. Based on the review, the appropriate model was chosen and modified to predict the shear strength of BFRP reinforced beam along with steel fibers.  相似文献   

3.
A series of steel fibre reinforced self-consolidating concrete (SFRSCC) beams have been tested to investigate the influence of steel fibres and the combined effect of fibres and stirrups on the deflection and cracking, ultimate loads and failure pattern. The experiment indicates that the shear strength increases clearly with the increasing of fibre content. The combination of steel fibres and stirrups demonstrates a positive composite effect on the ultimate load, ductility and failure pattern of concrete beam. This study also examines the feasibility of applying the modified compression field theory (MCFT) for the suitable assessment of shear resistance in fibre and steel rebar reinforced self-consolidating concrete beams. For fibre reinforced concrete member, a theoretical method is proposed based on the MCFT. The proposed ultimate shear capacity model was verified by the comparison with different test results.  相似文献   

4.
The ability of cracked reinforced concrete to transfer shear stresses is of major importance for concrete members designed to sustain high shear forces. Thereby, the maximum shear capacity is mainly affected by the aggregate interlock mechanism, the dowel action of longitudinal reinforcement, the restraining action of stressed reinforcement crossing the crack interface and the possible presence of stirrups. In case of steel fibre reinforced concrete (SFRC), where fibres are used to replace either completely or partially traditional stirrups, research has proven that the direct shear transfer capacity of cracked concrete is increased significantly by using fibres. By means of 69 direct shear tests, the shear-friction behaviour of SFRC with or without confining pressure has been studied further and existing empirical formulations have been checked. Since these models only provide a maximum shear strength, a more fundamental approach to model the direct shear behaviour of cracked SFRC is proposed in this paper. This model deals with the fibre-matrix interaction by means of fibre pull-out and aggregate interlock, as a function of the shear crack opening behaviour (i.e. combined opening and slipping).  相似文献   

5.
This paper presents an analysis of the influence of prestress and fibers on the shear behaviour of thin-walled I-section beams with reduced shear reinforcement ratio. Reduction of shear reinforcement in prestressed precast beams can make the reinforcement simpler and may increase the productivity in long line precasting beds. The use of short fibers can improve the shear strength and ductility. Nine concrete beams were built (six with prestressing forces) with three different mixtures: without fibers, with steel fibers, and with polypropylene fibers. Shear reinforcement ratios varied from 0 to 0.225% (geometric ratio). It was noted that prestressing increases cracking strength (both in bending and shear), extends the non-cracked area, and makes the compression struts less inclined. In the case of fiber reinforced concrete beams, control of cracking is more effective and consequently deflections are smaller. Ductility is also increased. Both fibers and prestressing reduce stresses in the stirrups and increase shear strength.  相似文献   

6.
Abstract

The tests results of 18 longitudinally reinforced reactive powder concrete (RPC) beams without stirrups and subjected to combined flexural and shear are presented in this paper. The main test variables were the ratio of the shear span-to-effective depth (a/d), the ratio of the longitudinal reinforcement (ρw), the percentage of steel fibers volume fractions (Vf) and the percentage of silica fume (SF) powder. The findings of this paper reveal that addition of steel fibers into the RPC mixture does not considerably affect the initial diagonal cracking load but it influences the ultimate load capacity. For all tested fibrous RPC beams, the ratio of the ultimate shear force to diagonal cracking force (Vu∕Vcr) have an average ratio of about 2.5. The shear design equations recommended by the (ACI 318-14) code, (CSA A23.3-04) code, (NZS 3101-06) code and (BS 8110-97) code have been modified to predict the ultimate shear strength of RPC beams without stirrups. The suggested equations gave satisfied predictions for the shear strength of the tested RPC beams with coefficients of variation (COV) ranging from 0.09049 to 0.1817.  相似文献   

7.
This research studied the diagonal tension behavior of 16 beams reinforced with longitudinal bars and steel fibers. The variable parameters included the concrete compressive strength and the percentage of fibers (0%, 0.5%, 1.0% and 1.5% by volume). The beams were tested under static loads resulting in high diagonal tension stresses. The shear reinforcement was composed of stirrups instrumented with strain gages to detect the effect of the fibers on the strains. Research results indicate that as the fiber volume increases, the shear strength and the ductility of the beams increased, providing significantly higher shear strength than specified by the ACI-318 Code.  相似文献   

8.
Six high-strength concrete beam specimens reinforced with fiber-reinforced polymer (FRP) bars were constructed and tested. Three of the beams were reinforced with carbon FRP (CFRP) bars and the other three beams were reinforced with glass FRP (GFRP) bars as flexural reinforcements. Steel fibers and polyolefin synthetic fibers were used as reinforcing discrete fibers. An investigation was performed on the influence of the addition of fibers on load-carrying capacity, cracking response, and ductility. In addition, the test results were compared with the predictions for the ultimate flexural moment. The addition of fibers increased the first-cracking load, ultimate flexural strength, and ductility, and also mitigated the large crack width of the FRP bar-reinforced concrete beams.  相似文献   

9.
The design of concrete structures reinforced with glass fibre reinforced polymer (GFRP) bars is influenced by their reduced stiffness and brittleness. In hyperstatic structures, the methodology used in force analysis depends on the ductility of the structural systems, which in this case, being essentially provided by the concrete, can be potentially increased by confining concrete in critical zones. This paper presents experimental and numerical investigations about the flexural behaviour of continuous beams reinforced with GFRP bars, namely of their service and failure responses, and the effect of increasing concrete confinement in critical cross-sections. A calculation procedure to quantify the confinement effect in beams due to the reduction of the spacing between shear stirrups is first presented. The experimental investigations comprised a comparative study in which two-span concrete beams reinforced with either GFRP or steel bars were tested in bending. In the former, the effect of reducing the shear stirrups spacing was analyzed together with the under- and over-reinforcement at the central support and midspan cross-sections, respectively. The development of a crack hinge in the continuity support zone highlighted the better performance of beams under-reinforced on the top layer with GFRP bars compared to “equivalent” beams reinforced with steel, namely at the resistance level. In addition, the confinement at critical zones increased significantly the strength and ductility. The numerical investigations included the development of non-linear finite element models for all beams tested - numerical results are in good agreement with test data and seem to confirm the confinement effect observed in the experiments.  相似文献   

10.
Effect of steel fibres on mechanical properties of high-strength concrete   总被引:1,自引:0,他引:1  
Steel fibre reinforced concrete (SFRC) became in the recent decades a very popular and attractive material in structural engineering because of its good mechanical performance. The most important advantages are hindrance of macrocracks’ development, delay in microcracks’ propagation to macroscopic level and the improved ductility after microcracks’ formation. SFRC is also tough and demonstrates high residual strengths after appearing of the first crack. This paper deals with a role of steel fibres having different configuration in combination with steel bar reinforcement. It reports on results of an experimental research program that was focused on the influence of steel fibre types and amounts on flexural tensile strength, fracture behaviour and workability of steel bar reinforced high-strength concrete beams. In the frame of the research different bar reinforcements (2∅6 mm and 2∅12 mm) and three types of fibres’ configurations (two straight with end hooks with different ultimate tensile strength and one corrugated) were used. Three different fibre contents were applied. Experiments show that for all selected fibre contents a more ductile behaviour and higher load levels in the post-cracking range were obtained. The study forms a basis for selection of suitable fibre types and contents for their most efficient combination with regular steel bar reinforcement.  相似文献   

11.
为了研究地震作用下型钢高强高性能混凝土框架梁的损伤演化过程,对5榀不同含钢率、配箍率下型钢高强高性能混凝土框架梁试件进行了低周反复加载试验。分析了框架梁的破坏形态以及裂缝开展模式,得到了低周反复荷载作用下框架梁的荷载-位移滞回曲线和骨架曲线,研究了不同含钢率、配箍率下框架梁的刚度退化、强度衰减、延性性能、耗能能力等方面...  相似文献   

12.
The paper reports a study on the shear resistance of concrete beams reinforced with mild steel bars that are milled from scrap metal such as old vehicle parts and obsolete machinery. It has been previously reported that because the chemical compositions of carbon, sulphur and phosphorus in these reinforcing steel bars exceed the maximum allowable limits, the characteristic tensile strengths are too high and ductility too low for standard mild steel. Concrete beams reinforced with such bars to resist flexural tensile and shear stresses were tested under a two-point loading system to provide a central constant moment region and outer shear spans. Tested beams exhibited little deflection and very low ductility prior to collapse. Experimental failure loads for the beams averaged 123% of the theoretical failure load, which was generally governed by either shear or yielding of the tension steel. Shear failure was mostly initiated by diagonal tension cracks, followed by either crushing of the concrete, or splitting of the concrete over the longitudinal tensile bars near the supports. Failure of the beams was brittle and the post-cracking strain energy absorption averaged 357.9 Nm. At failure the maximum crack width in the beams ranged from 1.12 to 5.0 mm, the largest sizes forming in the diagonal shear cracks.  相似文献   

13.
邓明科  代洁  梁兴文  张明玥 《工程力学》2016,33(10):208-217
提出采用高延性混凝土改善梁的抗剪性能和变形能力,设计了8个高延性混凝土梁和3个作为对比试件的混凝土梁,并通过静力试验研究不同剪跨比和配筋率高延性混凝土无腹筋梁的破坏形态和破坏机理。高延性混凝土无腹筋梁的剪切破坏形态有挤压破坏、剪压破坏、弯剪破坏和剪拉破坏。试验结果表明:高延性混凝土梁的剪切破坏均表现出一定的延性,与普通混凝土梁的脆性剪切破坏具有明显不同;高延性混凝土梁的剪切裂缝开展缓慢,说明高延性混凝土良好的拉伸应变硬化和多裂缝开展特性能够有效控制剪切裂缝的发展,防止混凝土压碎剥落,显著提高梁的抗剪性能和耐损伤能力;相比普通混凝土无腹筋梁,高延性混凝土无腹筋梁的受剪承载力和变形能力均有明显提高,表明采用高延性混凝土可以显著改善无腹筋梁的脆性剪切破坏模式;剪跨比和纵筋配筋率对高延性混凝土梁的剪切破坏形态和承载力影响较大,其受剪承载力随剪跨比的增大而降低,随配筋率的增大而有所提高。  相似文献   

14.
Due to the complex shear mechanism of steel fiber-reinforced concrete (SFRC) members, there is lack of comprehensive shear behavior models for SFRC members. The shear behavior model, based on a smeared crack model, requires the tensile stress–strain constitutive equation of SFRC membrane subjected to biaxial stresses. After SFRC panel tests under biaxial stresses were recently conducted, it has been possible to create a more complete smeared crack model for estimating the shear behavior of SFRC members. It is, however, very difficult to conduct such experiments for different types of steel fibers, various amount of steel fibers, different ranges of concrete strengths, etc. Thus, in this study, steel fibers are modeled as average direct tensile contribution elements in a modified smeared crack truss model, considering directionality and distribution of fibers. In this way, only simple bond tests are required to reflect the effects of different characteristics of SFRC. In addition, the shear contribution of steel fibers can be obtained considering the bond failure of steel fibers. The proposed model was compared to the test results of 8 SFRC panels and 80 SFRC beams, and the shear behavior of the SFRC members was well estimated.  相似文献   

15.
代洁  邓明科  陈佳莉 《工程力学》2018,35(2):124-132
为探讨材料延性对无腹筋梁受剪性能的影响,根据高延性混凝土设计理论,考虑纤维抗拉强度、长径比和纤维掺量等因素的影响,进行了4种不同配合比高延性混凝土(HDC)的力学性能试验,并设计了7个高延性混凝土(HDC)无腹筋梁和2个混凝土(RC)梁对比试件,通过静力试验研究材料延性对无腹筋梁的破坏形态、承载力和剪切变形能力的影响。试验结果表明:1)4组HDC试件分别达到不同的延性要求,其等效弯曲韧性可达砂浆试件的50倍,极限拉应变可达普通混凝土的90倍;2) HDC无腹筋梁的承载力可达RC梁的2.36倍,剪切变形能力可达RC梁的3倍以上,均发生具有一定延性的剪拉破坏;3)除剪跨比和纵筋配筋率外,HDC无腹筋梁的受剪承载力和变形能力均随材料延性的提高而增大,在设计中应予以考虑,并可根据工程实际需要选择相应的材料延性需求。  相似文献   

16.
低周反复荷载下钢纤维高强混凝土柱延性试验研究   总被引:4,自引:0,他引:4  
通过26根钢纤维高强混凝土柱在低周反复荷载作用下的压弯性能试验,研究了轴压比、钢纤维含量特征值、箍筋含量特征值、剪跨比和纵向配筋等因素对钢纤维高强混凝土柱延性性能的影响规律,结果表明:钢纤维对改善高强混凝土柱的脆性破坏性质并提高其延性具有明显效果,但钢纤维和箍筋对高强混凝土柱的延性提高作用机理不同,不能采用钢纤维等量(体积率相同)取代箍筋的方法使高强混凝土柱获得等同的延性性能。提出了钢纤维高强混凝土柱的位移延性系数计算公式,可供工程设计应用参考。  相似文献   

17.
为研究玻璃纤维增强聚合物复合材料(GFRP)筋与普通钢筋混合配筋钢纤维增强混凝土(SF/混凝土)梁的受弯性能及其受弯承载力计算方法,在考虑受拉区混凝土抗拉强度的基础上,给出混合配筋SF/混凝土梁的界限配筋率及受弯承载力计算公式;在此基础上设计制作了三种配筋方式的SF/混凝土梁,重点探讨了混合配筋率及筋材面积比(Af/As)对试验梁失效模式和受弯承载力的影响;同时,借助已有相关试验结果,对比分析了混凝土强度对混合配筋SF/混凝土梁受弯性能的影响。试验和对比分析结果表明:混合配筋SF/混凝土梁正截面应变仍符合平截面假定;相同配筋形式下,混合配筋SF/混凝土梁的受弯承载力和跨中挠度随筋材面积比Af/As的增加而增大;单层配筋梁的受弯承载力比双层配筋梁大;合理提高混凝土强度可在充分发挥GFRP筋抗拉作用的同时进一步提高混合配筋SF/混凝土梁的受弯承载力;采用本文给出的界限配筋率公式能有效预测混合配筋SF/混凝土梁的失效模式;梁受弯承载力建议公式的预测值与试验值吻合较好,具有良好的适用性。   相似文献   

18.
基于MCFT理论的钢纤维混凝土梁的截面分析   总被引:2,自引:0,他引:2  
根据钢纤维混凝土的特性,对MCFT理论的裂后混凝土平均主应力-平均主应变关系进行了修正。在Vecchio和Collins对钢筋混凝土板在纯剪作用下截面分析的基础上,叠加了弯矩的作用,建立了钢纤维混凝土梁在弯剪复合作用下的截面分析模型。利用作者以及其他研究者的试验对该模型进行了验证,结果表明计算得到的钢纤维混凝土梁的剪力-箍筋应变曲线和极限荷载与实测结果吻合良好。该文还利用该模型对钢纤维和箍筋对梁抗剪性能的影响效率进行了比较。  相似文献   

19.
The failure modes of Reinforced Concrete (RC) beams strengthened in shear with Fiber Reinforced Polymer (FRP) sheets or strips are not well understood as much as those of RC beams reinforced with steel stirrups. When the beams are strengthened in shear with FRP composites, beams may fail due to crushing of the concrete before the FRP reaches its rupture strain. Therefore, the effective strain of the FRP plays an important role in predicting the shear strength of such beams. This paper presents the results of an analytical and experimental study on the performance of reinforced concrete beams strengthened in shear with FRP composites and internally reinforced with conventional steel stirrups. Ten RC beams strengthened with varying FRP reinforcement ratio, the type of fiber material (carbon or glass) and configuration (continuous sheets or strips) were tested. Comparisons between the observed and calculated effective strains of the FRP in the tested beams failing in shear showed reasonable agreement.  相似文献   

20.
贾金青  姚大立  余芳 《工程力学》2014,31(8):126-133
基于12榀预应力型钢超高强混凝土简支梁和2榀预应力型钢普通强度混凝土简支梁的受剪试验,揭示了影响试验梁受剪性能的主要因素,探讨了剪跨比、箍筋间距、腹板厚度、混凝土强度和预应力度对试验梁的破坏形态、荷载-挠度曲线、斜截面开裂荷载和受剪承载力的影响规律。试验结果表明:预应力型钢超高强混凝土梁具有更好的受剪承载力和剪切延性,以及更大的刚度;基于试验结果建立了预应力型钢超高强混凝土梁的受剪承载力建议计算公式,计算结果与试验结果吻合较好,表明了该文提出的计算公式具有较高的精度。研究成果将为预应力型钢超高强混凝土梁的设计计算和工程应用提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号