首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium decoration is an effective strategy for improving the hydrogen adsorption binding energy and the storage capacity in carbon nanostructures. Here, it is shown that Li-decorated double carbon vacancy graphene (DVG) can be used as an efficient hydrogen storage medium by means of Density Functional Theory (DFT) based calculations. The Li binding energy in DVG is 4.04 eV, which is much higher than that of pristine graphene. A maximum of four hydrogen molecules adsorb on Li decorated on one side of DVG and this leads to a gravimetric storage capacity of 3.89 wt% with an average adsorption binding energy of 0.23 eV/H2. When Li is decorated on both sides of DVG, the gravimetric storage capacity reaches 7.26 wt% with a binding energy of 0.26 eV/H2 which shows that desorption would take place at ambient conditions.  相似文献   

2.
The hydrogen storage capacity of M-decorated (M = Li and B) 2D beryllium hydride is investigated using first-principles calculations based on density functional theory. The Li and B atoms were calculated to be successfully and chemically decorated on the Surface of the α-BeH2 monolayer with a large binding energy of 2.41 and 4.45eV/atom. The absolute value was higher than the cohesive energy of Li and B bulk (1.68, 5.81eV/atom). Hence, the Li and B atoms are strongly bound on the beryllium hydride monolayer without clustering. Our findings show that the hydrogen molecule interacted weakly with B/α-BeH2(B-decorated beryllium hydride monolayer) with a low adsorption energy of only 0.0226 eV/H2 but was strongly adsorbed on the introduced active site of the Li atom in the decorated BeH2 with an improved adsorption energy of 0.472 eV/H2. Based on density functional theory, the gravimetric density of 28H2/8li/α-BeH2) could reach 14.5 wt.% higher than DOE's target of 6.5 wt. % (the criteria of the United States Department of Energy). Therefore, our research indicates that the Li-decorated beryllium hydride monolayer could be a candidate for further investigation as an alternative material for hydrogen storage.  相似文献   

3.
The adsorption of hydrogen (H2) molecules on MoS2 monolayers doped with Fe, Co, Ni, Ru, Rh, Pd, Os, Ir or Pt was calculated via first-principle density functional theory (DFT). The H2 was found to interact most strongly with the MoS2 doped with Os with a higher adsorption energy of ?1.103 eV. Investigations of the adsorptions of two to five H2 molecules on Os-doped MoS2 monolayers indicate that there are at most four H2 interacting stably with the substrate with a promising average adsorption energy of ?0.792 eV. Molecular dynamics simulations also confirmed that the four H2 molecules can still be reasonably adsorbed and stored on the Os-doped MoS2 monolayer with a comparable average adsorption energy of ?0.713 eV at 300 K. This study indicates that MoS2 monolayer doped with Os is a promising substrate to interact strongly with H2 and can be applied to effectively store H2 at room temperature.  相似文献   

4.
The mechanism of hydrogen molecule adsorption on 2D buckled bismuthene (b-Bi) monolayer decorated with alkali metal atoms was studied using density functional theory based first principles calculations. The decorated atoms Li, Na and K exhibited distribution on surface of b-Bi monolayer with increasing binding energy of 2.6 eV, 2.9 eV and 3.6 eV respectively. The adsorption of H2 molecule on the slabs appeared stable which was further improved upon inclusion of van der Waals interactions. The adsorption behaviour of H2 molecules on the decorated slabs is physisorption whereas the slabs were able to bind up to five H2 molecules. The average adsorption energy per H2 molecules are in range of 0.1–0.2 eV which is good for practical applications. The molecular dynamics simulation also confirmed the thermodynamic stabilities of five H2 molecules adsorbed on the decorated slabs. The storage capacity values are found 2.24 wt %, 2.1 wt %, and 2 wt %, for respective cases of Li, Na and K atoms decorated b-Bi. The analysis of the adsorbed cases pointed to electrostatic interaction of Li and H2 molecule. The adsorption energies, binding energies, charge analysis, structural stability, density of states, and hydrogen adsorption percentage specifies that the decorated b-Bi may serve as an efficient hydrogen storage material and could be an effective medium to interact with hydrogen molecules at room temperature.  相似文献   

5.
The H2 adsorption characteristics of Li decorated single-sided and double-sided penta-silicene are predicted via density functional theory (DFT). The orbital hybridization results in Li atom strongly bind onto the surface of the penta-silicene with a large binding energy and it keeps the decorated Li atoms from aggregation. Moreover, Li decorated double-sided penta-silicene can store up to 12H2 molecules with the average hydrogen adsorption energy of ?0.220 eV/H2 and hydrogen uptake capacity of 6.42 wt%, respectively. The ab initio molecular dynamics (AIMD) simulations demonstrate the H2 molecules are released gradually from the substrate material with the increasing simulation time and the calculated desorption temperature TD is 281 K in the suitable operating temperature range. Our explorations confirm that Li decorated penta-silicene can be regarded as a promising hydrogen storage candidate for hydrogen storage applications.  相似文献   

6.
The adsorption of the hydrogen molecule on the pure porous graphene nanosheet (P-G) or the one decorated with Be atom (Be-G) was investigated by the first-principle DFT calculations. The Be atom was adsorbed on the P-G with a binding energy of ?1.287 eV to successfully establish the reasonable Be-G. The P-G was a poor substrate to interact weakly with the H2, whereas the Be-G showed a high affinity to the adsorbed H2 with an enhanced adsorption energy and transferred electrons of ?0.741 eV and 0.11 e, respectively. A molecular dynamics simulation showed that the H2 could also be adsorbed on the Be-G at room temperature with a reasonable adsorption energy of ?0.707 eV. The interaction between the adsorbed H2 and the Be-G was further enhanced with the external electrical fields. The applied electrical field of ?0.4 V/Å was found to be the most effective to enhance the adsorption of H2 on the Be-G with the modified adsorption energy and the improved transferred electrons being ?0.708 eV and 0.17 e, respectively. Our study shows that the Be-G is a promising substrate to interact strongly with the H2 and could be applied as a high-performance hydrogen gas sensor, especially under the external electrical field.  相似文献   

7.
8.
With the aid of the state-of-the-art Density Functional Theory simulations, triazine-like graphitic carbon nitride or g-C3N4 (abbreviated as gCN hereafter) nanosheet decorated with Y has been explored for reversible hydrogen storage applications in light fuel cell vehicles. The Y atom is found to bind strongly with gCN (binding energy ~ ?6.85 eV), can reversibly store 9 H2 with an average adsorption energy of ?0.331 eV/H2, an average desorption temperature of 384.24 K, and a storage capacity of 8.55% by weight, optimum for fuel cell application as prescribed by the Department of Energy. The bonding of Y on gCN involves a charge transfer from Y 4d orbitals to C and N 2p orbitals, whereas the adsorption of H2 is due to Kubas interactions involving net charge transfer from Y 4d orbital to H 1s orbital. We have computed the diffusion energy barrier for Y atoms as 3.07 eV, which may prevent metal-metal clustering. Further, ab-initio molecular dynamics simulation has been performed to check the structural stability of the present system. The system is found to be stable at 500 K with different concentrations of Y doping. The present system with the appropriate average adsorption energy per H2, suitable desorption temperature, and structural stability at higher temperatures is promising for onboard light fuel cell applications.  相似文献   

9.
Hydrogen is a worldwide green energy carrier, however due its low storage capacity, it has yet to be widely used as an energy carrier. Therefore, the quantum chemical method is being employed in this investigation for better understand the hydrogen storage behaviour on Pt (n = 1-4) cluster decorated C48H16 sheet. The Pt(n = 1-4) clusters are strongly bonded on the surface of C48H16 sheet with binding energies of ?3.06, ?4.56, ?3.37, and ?4.03 eV respectively, while the charge transfer from Pt(n = 1-4) to C48H16 leaves an empty orbital in Pt atom, which will be crucial for H2 adsorption. Initially, the molecular hydrogen is adsorbed on Pt(n = 1-4) decorated C48H16 sheet through the Kubas interaction with adsorption energies of ?0.85, ?0.66, ?0.72, and ?0.57 eV respectively, while H–H bond is elongated due to the transfer of electron from σ (HH) orbital to unfilled d orbital of the Pt atom, resulting in a Kubas metal-dihydrogen complexes. Furthermore, the dissociative hydrogen atoms adsorbed on Pt(n = 1-4) decorated C48H16 sheet have adsorption energies of ?1.14 eV, ?1.02 eV, ?0.95 eV, and ?1.08 eV, which are greater than the molecular hydrogen adsorption on Pt(n = 1-4) cluster supported C48H16 sheet with lower activation energy of 0.007, 0.109, 0.046, and 0.081 eV respectively. To enhance the dissociative hydrogen adsorption energy, positive and negative external electric fields are applied in the charge transfer direction. Increasing the positive electric field makes H–H bond elongation and good adsorption, whereas increasing the negative electric field results H–H bond contraction and poor adsorption. Thus, by applying a sufficient electric field, the H2 adsorption and desorption processes are can be easily tailored.  相似文献   

10.
The hydrogen (H2) storage capacity of Zirconium (Zr) decorated zeolite templated carbon (ZTC) has been investigated using sophisticated density functional theory (DFT) simulations. The analysis shows that the Zr atom gets bonded with ZTC strongly with binding energy (BE) of ?3.92 eV due to electron transfer from Zr 4d orbital to C 2p orbital of ZTC. Each Zr atom on ZTC can attach 7H2 molecules with average binding energy of ?0.433 eV/H2 providing gravimetric wt% of 9.24, substantially above the limit of 6.5 wt% set by the DoE of the United States of America. The H2 molecules are involved via Kubas interaction with Zr atom, which involves the charge transfer between Zr 4d orbital and H 1s orbital with interaction energy higher than physisorption but lower than chemisorption. The structural integrity of the system is confirmed via molecular dynamics (MD) simulations at room temperature and at highest desorption temperature of 500 K. We have investigated the chances of metal clustering by computing diffusion energy (ED) barrier for the movement of Zr atom, and we obtained via calculation, we can infer that the presence of ED barrier of ~2.36 eV may prevent the possibility. As the system ZTC has been synthesized, Zr doped ZTC is stable, existence of sufficient diffusion barrier prevents the clustering and adsorption energy and wt% of H2 are within the range prescribed by DoE, we feel that Zr decorated ZTC can be fabricated as promising hydrogen storage material for fuel cell applications.  相似文献   

11.
This work explored the feasibility of Li decoration on the B4CN3 monolayer for hydrogen (H2) storage performance using first-principles calculations. The results of density functional theory (DFT) calculations showed that each Li atom decorated on the B4CN3 monolayer can physically adsorb four H2 molecules with an average adsorption energy of ?0.23 eV/H2, and the corresponding theoretical gravimetric density could reach as high as 12.7 wt%. Moreover, the H2 desorption behaviors of Li-decorated B4CN3 monolayer at temperatures of 100, 200, 300 and 400 K were simulated via molecular dynamics (MD) methods. The results showed that the structure was stable within the prescribed temperature range, and a large amount of H2 could be released at 300 K, indicative of the reversibility of hydrogen storage. The above findings demonstrate that the Li-decorated B4CN3 monolayer can serve as a favorable candidate material for high-capacity reversible hydrogen storage application.  相似文献   

12.
The hydrogen storage capacity of yttrium decorated graphyne nanotubes is calculated using spin polarized DFT method. The stabilities, electronic properties and the structures of Y attachment on graphyne tube are investigated. It is revealed that Y can be separately adsorbed on graphyne tube with the binding energy of 6.76 eV and the clustering of metal atoms is hindered. The geometry optimization shows that Y atoms decorated graphyne tube can capture 42H2 molecules through Dewar-Kubas like interaction and the polarization under the electrostatic potential formed by Y and graphyne tubes. The weight percent capacity is 5.71 wt%, with an average hydrogen adsorption energy of −0.153 eV per H2, indicating its potential application on hydrogen storage candidates.  相似文献   

13.
Based on density functional theory (DFT) and first-principles molecular dynamics (MD),a new 3D hybrid Boron-Nitride-Carbon–interconnected frameworks (BNCIFs) consisting of organic linkers with Li decoration is created and optimized. Firstly, Li adsorption behaviors on several BNCxcomplexes are investigated and compared systematically. The results indicate C substitution of N atom in pure BN layer could improve the metal binding energy effectively. Secondly, the BNC layer (BNCNN) is chosen to model the frameworks of BNCIFs. The average binding energy of adsorbed Li atoms on BNCIFs is 3.6 eV which is much higher than the cohesive energy of bulk Li and avoids the Li clustering problem. Finally, we study the H2 adsorptions on the Li decorated BNCIFs by DFT. Every Li atom could adsorb four H2 molecules with an average binding energy of 0.24 eV. The corresponding gravimetric and volumetric storage capacities are 14.09 wt% and 126.2 g/L respectively overpassing the published 2020 DOE target. The excellent thermal stability of 160H2@40Li@BNCIFs is also proved by MD. This nanostructure could be served as a promising hydrogen storage medium at ambient conditions.  相似文献   

14.
15.
The hydrogen storage capacity of a novel permeable material viz Yttrium (Y) decorated zeolite templated carbon (ZTC) has been investigated using ab-initio DFT based simulations. The study reveals that each Y atom bonded on ZTC can attach at the most of 7H2 molecules with average binding energy of ?0.35 eV/H2. The gravimetric hydrogen storage capacity of ZTC with full decoration of Y atom comes about to 8.61 wt% which is sufficiently higher than the limit of 6.5 wt% set by the energy department of the United States of America. The desorption temperature of the system is 437 K. The stability of the structure over such an elevated temperature has been ensured via molecular dynamics (MD) simulations. The stability of the structure at room temperature and presence of sufficient energy barrier for the diffusion of Y atom signifies that the chances of metal-metal clustering are negligible. It has been discerned that it is the Kubas interaction which plays the key role in the interaction between Y and H2 molecules. The outcomes show that ZTC adorned with Y is a capable material for hydrogen storage which will inspire the instrumentalists to fabricate ZTC based fuel cell device.  相似文献   

16.
We report a density functional theory calculation dedicated to analyze the behavior of hydrogen adsorption on Yttrium-decorated C48B12. Electron deficient C48B12 is found to promote charge transfer between Y atom and substrate leading to an enhanced local electric field which can significantly improve the hydrogen adsorption. The analysis shows that Y atoms can be individually adsorbed on the pentagonal sites without clustering of the metal atoms, and each Y atom can bind up to six H2. molecules with an average binding energy of −0.46 eV/H2, which is suitable for ambient condition hydrogen storage. The Y atoms are found to trap H2 molecules through well-known “Kubas-type” interaction. Our simulations not only clarify the mechanism of the reaction among C48. B12, Y atoms and H2 molecules, but also predict a promising candidate for hydrogen storage application with high gravimetric density (7.51%).  相似文献   

17.
By applying density functional theory (DFT) and ab-initio molecular dynamics (AIMD) simulations, we predict the ultrahigh hydrogen storage capacity of K and Ca decorated single-layer biphenylene sheet (BPS). We have kept various alkali and alkali-earth metals, including Na, Be, Mg, K, Ca, at different sites of BPS and found that K and Ca atoms prefer to bind individually on the BPS instead of forming clusters. It was found that 2?2?1 supercell of biphenylene sheet can adsorb eight K, or eight Ca atoms, and each K or Ca atom can adsorb 5H2, leading to 11.90% or 11.63% of hydrogen uptake, respectively, which is significantly higher than the DOE-US demands of 6.5%. The average adsorption energy of H2 for K and Ca decorated BPS is ?0.24 eV and ?0.33 eV, respectively, in the suitable range for reversible H2 storage. Hydrogen molecules get polarized in the vicinity of ionized metal atoms hence get attached to the metal atoms through electrostatic and van der Waals interactions. We have estimated the desorption temperatures of H2 and found that the adsorbed H2 can be utilized for reversible use. We have found that a sufficient energy barrier of 2.52 eV exists for the movement of Ca atoms, calculated using the climbing-image nudged elastic band (CI-NEB) method. This energy barrier can prevent the clustering issue of Ca atoms. The solidity of K and Ca decorated BPS structures were investigated using AIMD simulations.  相似文献   

18.
H2 storage capabilities of penta-octa-graphene (POG) adorned by lightweight alkali metals (Li, Na, K), alkali earth metals (Be, Mg, Ca) and transition metals (Sc, Ti, V, Cr, Mn) are studied by density functional theory. Metals considered, with the exception of Be and Mg, can be stably adsorbed to POG, effectively avoiding metal clustering. The average H2 adsorption energies are calculated in a range from 0.14 to 0.95 eV for Li (Na, K, Ca, Sc, Ti, V, Cr, Mn) decorated POG. Because the H2 adsorption energies for reversible physical adsorption lie in the range of 0.15–0.60 eV and the desorption temperatures fall in the range of 233–333 K under the delivery pressure, 4Li@POG and 2Ti@POG are found to be the most suitable for H2 storage at ambient temperature. By polarization and hybridization mechanisms, up to 3 and 5 hydrogen molecules are stably adsorbed around each Li and Ti, respectively. The H2 gravimetric densities can reach up to 9.9 wt% and 6.5 wt% for Li and Ti decorated POG, respectively. Our findings suggest that, with metal decoration, such a novel two-dimensional carbon-based structure could be a promising medium for H2 storage.  相似文献   

19.
Using first-principles calculations, the adsorption and storage of hydrogen molecules on Y decorated B38 fullerene (Y4@B38) are investigated. It is shown that Y atoms strongly attach to the hexagon cavities of B38, and that isolated Y atoms on B38 are energetically more stable than the Y4 cluster, hence avoiding the aggregation issue. Moreover, Y4@B38 weakly interact with each other to build larger clusters. Polarization effects, as well as the Kubas mechanism, play essential roles in H2 adsorption and storage on Y4@B38. The adsorption energy per H2 molecule on Y4@B38 ranges from ?0.180 to ?0.249 eV, which is within the recommended range for an optimal H2 storage material. Each Y atom in Y4@B38 may hold up to six H2 molecules, corresponding to a gravimetric density of 4.96%. The stability of H2 adsorbed structures and its dependence on temperature and pressure are evaluated using the modified van't Hoff equation.  相似文献   

20.
Using density functional theory we have investigated the feasibility of bare and Ni decorated Al12N12 cages for hydrogen storage. In the bare Al12N12 cage, each Al atom is capable of adsorption one H2 in molecular form with the average adsorption energy of −0.165 eV. In addition, it is shown that hydrogen prefers to remain inside the Al12N12 cage with molecular form. In the Ni decorated Al12N12 cage, the most stable site for Ni atom is the bridge site over the Al–N bond shared by the six-membered rings (BH site) out of the cage. Ni atom of the NiAl12N12 cage has been found to adsorb up to three hydrogen molecules. It is demonstrated that up to 20 hydrogen molecules can be stored on the exterior surface and inside of the NiAl12N12 cage with total gravimetric density of 6.8 wt%. As the weight percentage hydrogen storage is increasing to 6.5 wt%, the minimum value of the Gibbs free energy becomes positive at 25 K. It indicates that high weight percentage hydrogen storage cannot be achieved in NiAl12N12 cages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号