首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
Spontaneous ignition induced by high-pressure hydrogen release is one of the huge potential risks in the promotion of hydrogen energy. However, the understanding of the microscopic dynamic characteristics of spontaneous ignition, such as ignition initiation and flame development, remains unresolved. In this paper, the spontaneous ignition caused by high-pressure hydrogen release through a tube is investigated by two-dimensional numerical simulation at burst pressure ranging from 2.67 to 15 MPa. Especially, the thermal and species characteristics in hydrogen shock-induced ignition under different strengths of shock wave are discussed carefully. The results show that the stronger shock wave caused by higher burst pressure leads to larger heating area and higher heating temperature inside the tube, increasing the possibility of spontaneous ignition. The shortening effect of initial ignition time and initial ignition distance will decrease with the increase of the burst pressure. Ignition will be initiated when the temperature is raised to about 1350–1400 K under the heating effect of shock waves. It is also found that the ignition occurs under the lean-fuel condition firstly on the upper and lower walls of the tube. The flame branch after spontaneous ignition is observed in the mixing layer. Two ignition kernels show different characteristics during the process of combustion and flow. The evolution of HRR and mass fraction of key species (OH, H, HO2) are also compared to identify the flame front. The mass fraction of H has the better trend with HRR. It is suggested that H radical is a more reasonable choice as the indicator of the flame front.  相似文献   

2.
To address the need for reliable premixed laminar burning velocity and thickness information within the spark assisted compression ignition (SACI) combustion regime, a large dataset of simulated reaction fronts has been generated in this work. A transient one dimensional premixed laminar flame simulation was applied to isooctane–air mixtures using a 215 species chemical kinetic mechanism. The simulation was exercised over fuel–air equivalence ratios, unburned gas temperatures and pressures ranging from 0.1 to 1.0, 298 to 1000 K and 1 to 250 bar, respectively, a range that extends beyond that of previous researchers. Steady reaction fronts with burning velocities in excess of 5 cm/s could not be established under all of these conditions, especially when burned gas temperatures were below 1500 K and/or when characteristic reaction front times were on the order of the unburned gas ignition delay. Steady premixed laminar burning velocities were correlated using a modified two-equation form based upon the asymptotic structure of a laminar flame, which produced an average error of 2.5% between the simulated and correlated laminar burning velocities, with a standard deviation of 3.0%. Additional correlations were constructed for reaction front thickness and adiabatic flame temperature. The resulting premixed laminar burning velocity correlation showed good agreement with experiments and existing correlations within the spark-ignited (SI) regime. Analysis of the simulated characteristic reaction front times and ignition delays suggests that homogeneous SACI combustion is most useful under medium and high load operating conditions.  相似文献   

3.
Transient plasma induced production of OH is followed in a quiescent, stoichiometric CH4-air mixture using the planar laser induced fluorescence technique. Ignition and subsequent flame propagation, for both the transient plasma and traditional spark ignition, are observed with a high speed camera (2000 fps). The transient plasma is generated using a 70 ns FWHM, 60 kV, 800 mJ pulse. OH production was confirmed throughout the chamber volume; however, the mean number density was found to decay below 1.3×1014 cm−3 near 100 μs. Nonetheless, ignition induced by transient plasma was decidedly faster than by spark ignition. Using the high speed camera, ignition initiated by transient plasma was found to occur along the length of the anode at approximately 1 ms, leading to the formation of a wrinkled, cylindrically-shaped flame. Analysis of the flame front propagation rates shows that flames ignited by transient plasma propagate essentially at the speed consistent with well accepted literature values for the stoichiometric methane-air mixture. This supports the notion that residue plasma, if any, has little effect on flame propagation.  相似文献   

4.
Self-ignition behaviour of highly transient jets from hydrogen high pressure tanks were investigated up to 26 MPa. The jet development and related ignition/combustion phenomena were characterized by high speed video techniques and time resolved spectroscopy. Video cross correlation method BOS, brightness subtraction and 1-dimensional image contraction were used for data evaluation. Results gained provided information on ignition region, flame head jet velocity, flame contours, pressure wave propagation, reacting species and temperatures. On burst of the rupture disc, the combustion of the jet starts close to the nozzle at the boundary layer to the surrounding air. Combustion velocity decelerated in correlation to an approximated drag force of constant value which was obtained by analysing the head velocity. The burning at the outer jet layer develops to an explosion converting to a nearly spherical volume at the jet head; the movement of the centroid is nearly unchanged and follows the jet front in parallel. The progress of the nearly spherical explosion could be evaluated by assuming an averaged flame ball radius. An apparent flame velocity could be derived to be about 20 m/s. It seems to increase slightly on the pressure in the tank or the related initial jet momentum. Self-initiation is nearly always achieved especially induced the interaction of shock waves and their reflections from the orifice. The combustion process is composed of shell combustion of the jet cone at the bases with a superimposed explosion of the decelerating jet head volume.  相似文献   

5.
The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa, temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures.  相似文献   

6.
An experimental study was conducted to research the mechanism of spontaneous ignition induced by high-pressure hydrogen release through tubes with a diameter of 10 mm and varying lengths from 0.3 to 3 m. The pressure and light signals inside the tube were collected. The propagation of shock wave inside and outside the tube was also systematically investigated. The development process of the jet flame in the atmosphere was completely recorded, and the multiple Mach disks at the tube exit were observed by using a high-speed camera. The results show that the minimum release pressure, at which the jet flame is formed, is found to be 3.87 MPa with the tube length of 1.7 m. When the tube length was longer than 1.7 m, the critical pressure for forming jet flame increased rapidly. The velocity attenuation of the shock wave is mainly affected by the burst pressure but not sensitive to the tube length, and the flame propagates in the tube at a slower velocity than the shock wave. The compression of the hydrogen-air mixture by the Mach disk causes it to burn more violently after passing through the Mach disk. It is confirmed that the flame at the tube exit is lifted in the atmosphere, then a jet flame initiates behind the second Mach disk.  相似文献   

7.
The aim of this study is to gain an insight into the physical phenomena underlying the spontaneous ignition of hydrogen following a sudden release from high-pressure storage and transition to sustained jet fire. The modelling and large-eddy simulation (LES) of the spontaneous ignition dynamics in a tube with a non-inertial rupture disk separating the high-pressure hydrogen storage and the atmosphere is described. Numerical experiments confirmed that due to the stagnation conditions a chemical reaction first commences in the tube boundary layer, and subsequently propagates throughout the tube cross-section. The dynamics of flame formation outside the tube, simulated by the LES model, has reproduced the combustion patterns, including vortex induced “flame separation”, which have been experimentally observed by high-speed photography. It is concluded that the LES model can be applied for hydrogen safety engineering, e.g. for the development of innovative pressure relief devices.  相似文献   

8.
In this paper the combustion and ignition process in the hydrogen-fueled peripheral-ported rotary engine with single and dual laser ignition systems was studied numerically. The computational method was established for the process simulation including interaction between turbulence and chemical reactions. The detailed chemical kinetic model of hydrogen combustion was used. It was shown that the ignition and combustion process in the H2-fueled rotary engine is highly transient with specific distortion and stretching of the combustion front in the combustion chamber due to complex motion of the rotor relative to the engine housing. The single and dual laser ignition systems were simulated to compare the ignition efficiency and the rate of hydrogen burning out. The evaluation of pressure in the combustion chamber was performed and compared with the experimental data obtained for the rotary engine fueled by natural gas. It was shown that the H2-fueled rotary engine with the dual laser ignition system has potential application in alternative automotive industry due to high efficiency and near-zero carbon-based emission.  相似文献   

9.
To determine the mechanism of interaction between a pressure wave and a propagating flame during knock, normal combustion and knock are numerically modeled in a simplified one-dimensional hydrogen-fueled spark ignition engine. The heat release rate of the flame front during knock abruptly increases when the pressure wave propagates through the reaction zone. The pressure wave in the diffusion zone perturbs temperature and thus causes thermal runaway at positions with low temperature and high reactant concentrations. Analysis of the Damköhler number (the ratio of gas dynamic time to chemical reaction time) and the estimated overpressure revealed that abruptly raised heat release rate during knock facilitates the amplification of the pressure wave and reinforces the interaction between pressure wave and chemical heat release.  相似文献   

10.
A high-pressure hydrogen jet released into the air has the possibility of igniting in a tube without any ignition source. The mechanism of this phenomenon, called spontaneous ignition, is considered to be that hydrogen diffuses into the hot air caused by the shock wave from diaphragm rupture and the hydrogen-oxidizer mixed region is formed enough to start chemical reaction. Recently, flow visualization studies on the spontaneous ignition process have been conducted to understand its detailed mechanism, but such ignition has not yet been well clarified. In this study, the spontaneous ignition phenomenon was observed in a rectangular tube. The results confirm the presence of a flame at the wall of the tube when the shock wave pressure reaches 1.2–1.5 MPa in more than 9 MPa burst pressure and that ignition occurs near the wall, followed by multiple ignitions as the shock wave propagates, with the ignitions eventually combining to form a flame.  相似文献   

11.
Flame front surface area and enflamed volume (the volume enclosed with flame front) is theoretically analysed for a spark‐ignition engine, having cylindrical disc‐shaped combustion chamber with two spark plugs located axisymmetrically on cylinder head, between cylinder axis and cylinder wall. Spherical flame front assumption is used. A computer code is developed based on purely geometric consideration of the flame development process in combustion chamber, and is used to investigate the effects of variations of spark plugs' locations on geometric features of the flame front. A comparison has also been made with a spark‐ignition engine having one spark plug at the same location. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The influence of different ignition positions and hydrogen volume fractions on the explosion characteristics of syngas is studied in a rectangular half-open tube. Three ignition positions were set at the axis of the tube, which are 0 mm, 600 mm and 1100 mm away from the closed end, respectively. A range of hydrogen volume fraction (φ) from 10% to 90% were concerned. Experimental results show that different ignition positions and hydrogen volume fraction have important influence on flame propagation structure. When ignited at 600 mm from the closed end on the tube axis, distorted tulip flame forms when flame propagates to the closed end. The formations of the tulip flame and the distorted tulip flame are accompanied by a change in the direction of the flame front propagation. The flame propagation structure and pressure are largely affected by the ignition position and the hydrogen volume fraction. At the same ignition position, flame propagation speed increases with the growing of hydrogen volume fraction. And the pressure oscillates more severe as the ignition location is closer to the open end. And pressure oscillations bring two different forms. The first form is that the pressure has a periodic oscillation. The amplitude of the pressure oscillation gradually increases. It takes several cycles from the start of the oscillation to the peak. For the second form, the pressure reaches the peak of the oscillation in the first cycle of the start to the oscillation.  相似文献   

13.
To investigate the effects of the geometry of downstream pipes on the shock ignition and the formation of the shock waves during high-pressure hydrogen sudden expansion, a series of bench-mark experiments were designed and high-pressure hydrogen were released into five types of pipes with different angles (60, 90, 120, 150 and 180°). It was found that the geometry of downstream pipes had a significant influence on the shock ignition of hydrogen. The incident shock wave would be reflected at the corner of the pipes with angles of 60, 90, 120 and 150°. The intensity of the reflected shock wave is higher if the angle is smaller. In addition, the average velocity of the leading incident shock wave would decrease when it passed the corner of the pipe. Using a pipe with smaller angle significantly increases the likelihood of shock ignition and lowers the minimal required burst pressure for shock ignition. The overpressure of the incident shock waves inside the exhaust chamber (for the cases with the angles of 60, 90, 120 and 150°) decreases sharply. There are three flame propagation behaviors inside the exhaust chamber: flame quenching, flame separation and no flame separation. The results of this study have implications concerning designs for storage safety of hydrogen energy and may help get better understanding of shock ignition mechanism of high pressure hydrogen and effect of pipeline geometry on ignition.  相似文献   

14.
Hydrogen is expected to be an alternative energy carrier in the future. High-pressure hydrogen storage option is considered as the best choice. However, spontaneous ignition tends to occur if hydrogen is suddenly released from a high-pressure tank into a tube. In order to improve the safety of hydrogen application, an experimental investigation on effects of CO2 additions (5%, 10% and 15% volume concentration) on the spontaneous ignition of high-pressure hydrogen during its sudden expansion inside the tube has been conducted. Pressure transducers are used to record the pressure variation and light sensors are employed to detect the possible spontaneous ignition. It is found that the shock wave overpressure and the mean shock wave speed are almost the same inside the tube for different CO2 additions under the close burst pressures. For cases with more CO2 additions, the ignition detected time is longer and the average speed of the flame, the maximum value of light signals and the detected duration time of spontaneous ignition are smaller. It is shown that minimum burst pressure required for spontaneous ignition increase 1.47 times for 15% CO2 additions. The minimum burst pressure required for spontaneous ignition increases from 4.37 MPa (0% CO2) up to 6.41 MPa (15% CO2). With the increasing of CO2 additions, it requires longer distance and longer time for hydrogen and oxygen to mix and thus longer ignition delay distance/time. The results showed that additions of CO2 to air have a good suppressing effect on hydrogen spontaneous ignition.  相似文献   

15.
This paper presents experimental results and a new computational model that investigate cycle to cycle variations (CCV) in a spark ignition (SI) engine. An established stochastic reactor model (SRM) previously used to examine homogeneous charge compression ignition (HCCI) combustion has been extended by spark initiation, flame propagation and flame termination sub-models in order to simulate combustion in SI engines. The model contains a detailed chemical mechanism but relatively short computation times are achieved. The flame front is assumed to be spherical and centred at the spark location, and a pent roof and piston bowl geometry are accounted for. The model is validated by simulating the pressure profile and emissions from an iso-octane fuelled single cylinder research engine that showed low CCV. The effects of key parameters are investigated. Experimental results that show cycle to cycle fluctuations in a four-cylinder naturally aspirated gasoline fuelled SI engine are presented. The model is then coupled with GT-Power, a one-dimensional engine simulation tool, which is used to simulate the breathing events during a multi-cycle simulation. This allows an investigation of the cyclic fluctuations in peak pressure. The source and magnitude of nitric oxide (NO) emissions produced by different cycles are then investigated. It was found that faster burning cycles result in increased NO emissions compared with cycles that have a slower rate of combustion and that more is produced in the early stages of combustion compared with later in the cycle. The majority of NO was produced via the thermal mechanism just after combustion begins.  相似文献   

16.
An experimental study of shock wave propagation and its influence on the spontaneous ignition during high-pressure hydrogen release through a tube are measured by pressure transducers and light sensors. Results show that the pressure behind a shock wave first increases, and subsequently remains near constant value with an increase of the propagation distance. That is, a certain propagation distance is required to form a stable shock wave in the tube. In the front of the tube, the minimum value of pressure behind the shock wave (Pshock) required for spontaneous ignition decreases with the increase in axial distance to the diaphragm. However, the minimum Pshock remains nearly a constant value in the rear part of the tube. Moreover, the critical values of shock Mach number (MS) for spontaneous ignition decrease with the increase in tube length. And the ignition delay time decreases with the increase of the MS. As the ignition kernel grows in size to a flame, it propagates downstream along the tube with velocity greater than the theoretical flow velocity of the hydrogen-air contact surface. The flame propagation velocity relative to tube wall increases with MS. When the self-sustained flame exits from the tube, a rapid non-premixed turbulent combustion is observed in the chamber. The combustion-wave overpressure increases with the increase of the MS.  相似文献   

17.
Flame propagation across a single perforated plate was experimentally studied in a square cross-section channel. Experiments were performed in premixed hydrogen-air mixture with different equivalence ratios and initial pressures, aiming at identifying the parametric influence. High-speed schlieren photography and pressure records were used to capture the flame front and obtain the pressure build-up. Four stages for the flame front crossing the perforated plate were obtained, namely, laminar flame, jet flame, turbulent flame and secondary flame front. Following ignition, a laminar flame was obtained, which was nearly not affected by the confinement. This laminar flame was squeezed to pass through the perforated plate, producing the jet flame with a step change on velocity. Turbulent flame was generated by merging the jets, which facilitated the acceleration of the flame front. Secondary flame front induced by Rayleigh-Taylor instability was clearly observed in the process of the turbulent front moving forward. Both velocity and pressure are enhanced in this stage. Parametric studies suggested that the secondary flame front is more obvious in the stoichiometric mixture with higher initial pressure, and characterized by a faster propagation velocity and a bigger pressure rise.  相似文献   

18.
Direct numerical simulations (DNSs), for a stratified flow in HCCI engine-like conditions, are performed to investigate the effects of exhaust gas recirculation (EGR) by NOx and temperature/mixture stratification on autoignition of dimethyl ether (DME) in the negative temperature coefficient (NTC) region. Detailed chemistry for a DME/air mixture with NOx addition is employed and solved by a hybrid multi-time scale (HMTS) algorithm. Three ignition stages are observed. The results show that adding (1000 ppm) NO enhances both low and intermediate temperature ignition delay times by the rapid OH radical pool formation (one to two orders of magnitude higher OH radicals concentrations are observed). In addition, NO from EGR was found to change the heat release rates differently at each ignition stage, where it mainly increases the low temperature ignition heat release rate with minimal effect on the ignition heat release rates at the second and third ignition stages. Sensitivity analysis is performed and the important reactions pathways for low temperature chemistry and ignition enhancement by NO addition are specified. The DNSs for stratified turbulent ignition show that the scales introduced by the mixture and thermal stratifications have a stronger effect on the second and third stage ignitions. Compared to homogenous ignition, stratified ignition shows a similar first autoignition delay time, but about 19% reduction in the second and third ignition delay times. Stratification, however, results in a lower averaged LTC ignition heat release rate and a higher averaged hot ignition heat release rate compared to homogenous ignition. The results also show that molecular transport plays an important role in stratified low temperature ignition, and that the scalar mixing time scale is strongly affected by local ignition. Two ignition-kernel propagation modes are observed: a wave-like, low-speed, deflagrative mode (the D-mode) and a spontaneous, high-speed, kinetically driven ignition mode (the S-mode). Three criteria are introduced to distinguish the two modes by different characteristic time scales and Damkhöler (Da) number using a progress variable conditioned by a proper ignition kernel indicator (IKI). The results show that the spontaneous ignition S-mode is characterized by low scalar dissipation rate, high displacement speed flame front, and high mixing Damkhöler number, while the D-mode is characterized by high scalar dissipation rate, low displacement speeds in the order of the laminar flame speed and a lower than unity Da number. The proposed criteria are applied at the different ignition stages.  相似文献   

19.
Metal powder heating and ignition by an electro-static discharge, ESD (or spark) was investigated. For different spark voltages, ESD discharge energies transferred to the powder samples and respective spark radii are evaluated experimentally. Al powder was chosen as a popular metal fuel additive for many energetic formulations, and as a metal, for which spark initiation typically results in ignition of individual particles rather than in an aerosol flame consuming bulk of the powder. Al powders with nominal particle sizes of 3-4.5 μm and 10-14 μm were used in experiments. The finer powder was found to be strongly agglomerated while almost no agglomeration was observed for the coarser powder. Emission streaks produced by an empty steel sample holder struck by the spark and by the spark-heated and ignited Al particles were detected and differentiated. Emission traces of burning particles were acquired by a photodiode to determine burn times for the particles ignited by sparks with different energies. From the burn times, particle diameters were estimated using correlations reported in the literature. Burn times for the ignited Al particles clearly correlated with the Joule heat energy for the coarser (nom. 10-14 μm) powder, while the correlation was tentative for the finer powder used in this work. The results are interpreted considering the particle size distributions and assuming that particles are Joule heated so that the heating is more efficient for finer particles, with greater surface to volume ratio. It is further suggested that strong agglomeration observed for the finer Al powder skewed the expected correlation between the Joule heating energy and the size of ignited particles. Current experiments suggest several additional practical conclusions. The mechanisms of powder ejection and ignition by the ESD are not directly related to each other. The commonly considered minimum ignition energy is not a useful powder characteristic and depends strongly on the optical diagnostics used. It is proposed that more useful and readily measured quantitative indicators of the powder ignition sensitivity are the burn time of the particles ignited by the spark and the distance the burning particles travel, which respectively quantify how long and how far reaching is the spark’s ignition stimulation. Both parameters should be quantified for a specific spark energy or energy range.  相似文献   

20.
Reducing engine pollutant emissions and fuel consumption is an important challenge. Lean-burning engines are a promising development; however, such engines require high-energy ignition systems for typical working conditions (equivalence ratio, Φ < 0.7). Laser-induced ignition is envisaged as a way to obtain high-energy ignition as a result of progress that has been made in laser beam technology in terms of stability, size, and energy. This study investigated the minimum energy necessary to ignite a laminar premixed methane air mixture experimentally. A parametrical study was performed to characterize the effects of the flow velocity, equivalence ratio, and lens focal length on the minimum energy required for ignition. Experiments were conducted using a premixed laminar CH4/air burner. Laser-induced breakdown was achieved by focusing a 532-nm nanosecond pulse from a Q-switched Nd:YAG laser with an anti-reflection-coated lens. Mixture ignition and the early stages of flame propagation were studied using a high speed Schlieren technique. Despite the stochastic characteristic of the laser breakdown phenomena, good reproducibility in the minimum energy required for the ignition measurements was observed. The cases in which the CH4/Air mixture flow ignites are defined as those with a laminar flame front propagation visible in the Schlieren images 10 ms after the energy deposition. The same minimum ignition energy (MIE) versus equivalence ratio (Φ) type of curves were obtained with a laser-induced spark and with a spark plug. Due to the threshold of energy required to obtain breakdown and the stochastic character of the energy absorption by the spark, a constant value was obtained (corresponding to the breakdown threshold) when the minimum ignition energy was lower than the breakdown threshold. As already noticed by several authors, MIE values higher than those observed using spark plugs were obtained. However, these differences tended to disappear at the lean and rich fuel limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号